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Organisation of the lectures
1. Univariate optimisation

• Bisection
• Steepest Descent
• Newton’s method

2. Multivariate optimisation
• Steepest descent and line-search methods:
• Wolfe and Armijo conditions,
• Newton’s method, Trust-region methods,
• Conjugate Gradient, Truncated Newton’s, Quasi-Newton

methods,
3. Constrained Optimisation:

• Projected gradient methods,
• Penalty methods,
• Exterior and interior point methods, SQP

4. Adjoint methods
• Reversing time
• Automatic Differentiation
• Adjoint CFD codes
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Structure optimisation: topology

(Source: http://www.bloodhoundssc.com/car/structural design.cfm)
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Fluid optimisation: topology

Initial flow field in a box with a single inlet on the left and two
outlets on the right

(Source: Othmer, 2006)
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Fluid optimisation: topology

(left): Sensitivity of equal mass flow to porosity,
(right) sensitivity of dissipated power to porosity.

(Source: Othmer, 2006)

7 / 1

Fluid optimisation: topology

(left): Initial flow field, (right): optimised porosity and velocity
field after one iteration to minimise a combination of the two
sensitivities.

(Source: Othmer, 2006)
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Fluid flow optimisation: topology

Optimisation of an airduct leading to a 90◦ bend.

before after

Optimisation improved the pressure drop by 49%.

(Source: Müller, Othmer, GACM 2011)
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Integrating Topology and Shape Opt: Workflows

Design space from PDP

Porosity distribution after topology optimisation

Extracted shape

Shape optimisation

(Source: FlowHead results, adj. solver: ICON, regularisation TUM, workflow FE-Design)
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Applications of adjoint solutions

The adjoint solution can directly express the sensitivity of a single
cost function, e.g. drag, w.r.t. many design variables, e.g. normal
surface displacement of each mesh point:
to reduce drag: red: push in, blue: pull out

(Source: adjoint solver ICON, testcase and solution VW )
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Transonic wing optimisation: wave drag
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cP , Boeing 747 Wing-Body before optimisation
A strong ‘lambda’ shock can be observed on the upper surface.
(Source: Jameson, 1998)
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Transonic wing optimisation: wave drag
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Pressure distribution after a three-point optimisation
The ‘lambda’-shock has disappeared.
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Transonic wing optimisation: wave drag
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Pressure distribution: comparison before/after optimisation
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CAD-based shape optimisation

Contour plots of velocity magnitude, shape and streamlines for the
initial (left) and optimised (right) ducts. Surface description is
taken from and returned to NURBS patches from the CAD
description.
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Example: Aircraft

Aim: Maximise aircraft range
and minimise fuel consumption
Approach: Variation of wing
span, sweep and chord, and
MTOW
Methods: 1. Multidisciplinary
design & optimisation (MDO)
2. Multi-objective optimisation
(MOO)
Results: Trade-off for range ver-
sus fuel within the optimal design
area

(Source: Vivace Project http://www.vivaceproject.com/content/forum3/6.2%20Vankan.pdf)
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Multi-Disciplinary optimisation of a wing

• comprises the
main analyses

• applies relevant
load cases

• automates data
exchange

• has many design
variables

• predicts many
design targets

To complex for a human operator: needs an optimisation algorithm

(Source: Vivace Project http://www.vivaceproject.com)
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Manual design loop

Simulation:

CAE, CFD ..

OK?

N Y

Post−processing

Evaluation

pre−processing:

CAD, meshing

manual design

modification

• manual evaluation of the design, complex judgements possible

• manual changes of parameters, incorporates design constraints

• labour-intensive, only small design spaces possible, design
space not fully explored
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Numerical optimisation

Simulation:

CAE, CFD ..

new set of design

variables

Post−processing

cost function

pre−processing:

CAD, meshing

min?

N Y

parametrisation

Design

Optimiser

• requires set up of a design parametrisation, if possible
respecting design constraints

• the numerical optimiser selects a new set of design variables

• rigorous evaluation of the design space

• The key element is the optimiser
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Nomenclature

Model: a computational model of the physical process to be
optimised, e.g. a CFD or FEA simulation program.

Parametrisation: definition of how the parameters or design
variables affect the model, e.g. variable dimensions
that define the shape of an object.

Design space: The range the parameters can take on define the
design space.

Cost function, Objective: A scalar function that is to be
minimised, e.g. drag of a vehicle. There may be
more than one objective.

Optimiser: Algorithm that selects a set of design variables in
order to find the minimum
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Taxonomy of optimisation problems

Linear vs. Non-linear: Is the cost function a linear or non-linear
function of the design variables. Typically, relevant
industrial problems are non-linear

Constrained vs Un-constrained: In constrained opt. an additional
constraint that has to be satisfied. E.g. minimise the
drag at constant lift (system or PDE-constraint).
Geometric constraints are used to ensure
manufacturing or assembly.

local vs global: In most industrial applications we seek an
improvement of an existing solution, not the best
solution in the entire design space.

continuous vs discrete: Changing the wing span is a continuous
parameter, deciding between 2 or 4 engines for an
aircraft is a discrete parameter.
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Stochastic optimisation

• Explore the design-space with stochastic sampling

• After initial global exploration, focus on ’promising’ areas.

• Typical methods: Genetic Algorithms (GA) and Evolutionary
Alg. (EA).

(Source: Matlab.com)
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Meta-modelling/Response surface

• Often combined with stochastic opt. and/or reduced accuracy
modelling

• Fit a curve/surface through the sampled points: response
surface (RS)

• Search the minimum on the RS

• Update the RS with the new samples
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Gradient-based optimisation

• Walk downhill to
descend to the
minimum,

• May be caught in
local minima,

• More complex to
deal with
constraints, may
need gradients of
the constraints as
well.

29 / 1

Gradient-based optimisation: Rosenbrock’s function

Steepest
Descent

BFGS

Different choices of descent directions result in different
convergence rates to the minimum.
(Source: Matlab.com)
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Gradient-based optimisation: design loop

Simulation:

CAE, CFD ..

new set of design

variables

min?

N Y

Optimiser

alpha i

Post−processing

cost function

pre−processing:

CAD, meshing

Design param.

Compute gradient

df/d alpha i

• Computation of the gradient of the cost function J w.r.t the
design variables αi is complex and expensive

• Needs to include how model solution U and mesh coordinates
X depends on the αi :

dJ

dαi
=

∂J

∂αi
+
∂J

∂U

∂U

∂X

∂X

∂αi
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Characteristics of Engineering optimisation problems

Cost of evaluation: Can I afford many evaluations of the model? If
so, one could use the existing model discretisation
(e.g. CFD code) as a ’black box’ by calling it
repeatedly.

Gradients: Is it feasible to compute gradients of the cost
function w.r.t. design variables?

This leads to two main approaches for numerical optimisation:

• if the evaluation is cheap, e.g. stress analysis, stochastic
methods are used with black-box models.

• if the evaluation is expensive, e.g. CFD, we have to compute
gradients to be able to use gradient-based optimisation.

32 / 1

Outline

33 / 1

Notes

Notes

Notes



Organisation of the lectures
1. Univariate optimisation

• Bisection
• Steepest Descent
• Newton’s method

2. Multivariate optimisation
• Steepest descent and line-search methods:
• Wolfe and Armijo conditions,
• Newton’s method, Trust-region methods,
• Conjugate Gradient, Truncated Newton’s, Quasi-Newton

methods,
3. Constrained Optimisation:

• Projected gradient methods,
• Penalty methods,
• Exterior and interior point methods, SQP

4. Adjoint methods
• Reversing time
• Automatic Differentiation
• Adjoint CFD codes
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