Introduction to Gradient-Based Optimisation

Part 2: Univariate methods

> Dr. J.-D. Müller

School of Engineering and Materials Science,
Queen Mary, University of London
j.mueller@qmul.ac.uk

UK Fluids Network SIG on Numerical Optimisation with Fluids Cambridge, 8-10 August 2018
(C) Jens-Dominik Müller, 2011-18, updated 6/8/18
Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Organisation of the lectures

1. Univariate optimisation

- Bisection
- Steepest Descent
- Newton's method

2. Multivariate optimisation

- Steepest descent and line-search methods:
- Wolfe and Armijo conditions,
- Newton's method, Trust-region methods,
- Conjugate Gradient, Truncated Newton's, Quasi-Newton methods,

3. Constrained Optimisation:

- Projected gradient methods,
- Penalty methods,
- Exterior and interior point methods, SQP

4. Adjoint methods

- Reversing time
- Automatic Differentiation
- Adjoint CFD codes

Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tank design

Properties of an open-topped tank with height x_{1}, sides x_{2}, x_{3} :
Notes
$\begin{array}{llrl} & \text { Volume of a tank: } & & V=x_{1} x_{2} x_{3} \\ \text { Surface: } & & S=2 x_{1} x_{2}+2 x_{1} x_{3}+x_{2} x_{3}\end{array}$

Minimise $\quad S$
(3)

Constrained optimisation:
Minimise $\quad S \quad$ subject to $\quad V=V^{*}$
(4)

We can express this constraint by eliminating one of the variables,

$$
x_{3}=V^{*} x_{1}^{-1} x_{2}^{-1}
$$

Unconstrained optimisation:

$$
\begin{equation*}
\operatorname{Min} \quad S=2 x_{1} x_{2}+2 V^{*} x_{2}^{-1}+V^{*} x_{1}^{-1} . \tag{5}
\end{equation*}
$$

Univariate tank design

To simplify the problem further, assume a square base, $x_{2}=x_{3}$.
Then

$$
\begin{aligned}
V & =x_{1} x_{2}^{2} \\
S & =4 x_{1} x_{2}+x_{2}^{2} \\
\text { or with } V=V^{*}: \quad S & =4 V^{*} x_{2}^{-1}+x_{2}^{2} .
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad地
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Optimality conditions

From simple calculus: a local minimum exists for $F(x)$ if

$$
\begin{equation*}
\frac{d F}{d x}=F^{\prime}(x)=0 \quad \text { and } \quad \frac{d^{2} F}{d x^{2}}=F^{\prime \prime}(x)>0 \tag{6}
\end{equation*}
$$

If (??) is satisfied for $x=x^{*}$ and

$$
\begin{equation*}
F(x) \geq F\left(x^{*}\right) \text { for all } x \tag{7}
\end{equation*}
$$

then x^{*} is a global minimum.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The bisection method

Simple (but inefficient) idea: given a bracketing interval, i.e. it contains a minimum, $a \leq x^{*} \leq b$, successively half the interval around the minimum (see Bartholomew-Biggs, section 2.2).
set $x_{a}=a, x_{b}=b$
do
compute $F_{a}=F\left(x_{a}\right), F_{b}=F\left(x_{b}\right)$
set $x_{M}=\frac{1}{2}\left(x_{a}+x_{b}\right), x_{l}=\frac{1}{2}\left(x_{a}+x_{M}\right), x_{r}=\frac{1}{2}\left(x_{M}+x_{b}\right)$
compute $F_{l}=F\left(x_{l}\right),, F_{m}=F\left(x_{m}\right), F_{r}=F\left(x_{r}\right)$
compute $F_{\text {min }}=\min \left\{F_{a}, F_{l}, F_{m}, F_{r}, F_{b}\right\}$
if $\quad F_{\min }=F_{a}$ or $F_{\min }=F_{l}$ then $x_{b}=x_{M}$,
else if $\quad F_{\text {min }}=F_{m} \quad$ then $\quad x_{a}=x_{l}, x_{b}=x_{r}$,
else
$x_{a}=x_{M}$.
while $\left|x_{b}-x_{a}\right| \geq \varepsilon$

Bisection on tank design problem I

Bisection on tank design problem II

$$
\min S=4 V^{*} x_{2}^{-1}+x_{2}^{2} \quad \text { with } \quad V^{*}=5
$$

iter	$\times \mathrm{A}$	xL	xM	$\times \mathrm{R}$	xB	fmin
1,	1.0000	2.0000	3.0000	4.0000	5.000000	14.000000
2,	1.0000	1.5000	2.0000	2.5000	3.000000	14.000000
3,	1.5000	1.7500	2.0000	2.2500	2.500000	13.951389
4,	2.0000	2.1250	2.2500	2.3750	2.500000	13.927390
5,	2.0000	2.0625	2.1250	2.1875	2.250000	13.927390
6,	2.0625	2.0938	2.1250	2.1562	2.187500	13.924776
7,	2.1250	2.1406	2.1562	2.1719	2.187500	13.924776
8,	2.1406	2.1484	2.1562	2.1641	2.171875	13.924776
9,	2.1484	2.1523	2.1562	2.1602	2.164062	13.924776
10,	2.1523	2.1543	2.1562	2.1582	2.160156	13.924767
11,	2.1523	2.1533	2.1543	2.1553	2.156250	13.924767
12,	2.1533	2.1538	2.1543	2.1548	2.155273	13.924767

Properties of the bisection method

- User has to specify the initial bracketing interval $x_{A} \leq x \leq x_{B}$ which needs to contain a minimum, although there are algorithms for this (see $B-B, 2.2$).
- The algorithm finds any minimum in the bracket, not necessarily the lowest minimum in the bracket
- Convergence to the optimum is rather slow and depends on the width of the initial bracket and the sought width of the final bracket ε :

$$
N \geq \frac{\log _{10}\left(x_{B}-x_{A}\right)+\log _{10} \varepsilon}{\log _{10}(2)}
$$

- The bisection-method is 'gradient-free', we do not need to compute gradients for it.

Outline

The secant method

Again, start from a bracketing interval but use gradient information to estimate the location of the minimum in the bracket.
Bracketing implies here that $x_{a}<x_{b}, F^{\prime}\left(x_{a}\right)<0, F^{\prime}\left(x_{b}\right)>0$ and $F^{\prime \prime}>0$. Also, assume F is twice continuously differentiable.
set $x_{1}=a, x_{2}=b$
compute $F_{1}^{\prime}=F^{\prime}\left(x_{1}\right), F_{2}^{\prime}=F^{\prime}\left(x_{2}\right)$
set $k=2$
do
set $k=k+1$
! Use linear interpolation to find $F^{\prime}\left(x_{k}\right)=0$ using x_{k-1}, x_{k-2}
set $x_{k}=x_{k-2}-\frac{F_{k-2}^{\prime}}{F_{k-1}^{\prime}-F_{k-2}^{\prime}}\left(x_{k-1}-x_{k-2}\right)$
compute $F_{k}^{\prime}=F^{\prime}\left(x_{k}\right)$
while $\left|F_{k}^{\prime}\right| \geq \varepsilon$

Secant method on tank example

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Secant method on tank example

iter	x_{k-2}	x_{k-1}	x	$f^{\prime}(k)$	$f(k)$
3,	1.0000	5.0000	3.647059	5.790476	18.784909
4,	5.0000	3.6471	1.349327	-8.286233	16.642888
5,	3.6471	1.3493	2.701883	2.664106	14.702418
6,	1.3493	2.7019	2.372820	1.193416	14.059064
7,	2.7019	2.3728	2.105796	-0.298623	13.931973
8,	2.3728	2.1058	2.159240	0.028765	13.924836
9,	2.1058	2.1592	2.154544	0.000655	13.924767
10,	2.1592	2.1545	2.154434	-0.000001	13.924767
11,	2.1545	2.1544	2.154435	0.000000	13.924767

Alternatives for the computation of x_{k}

The example computed x_{k} from x_{k-1}, x_{k-2}, regardless of how the iterates fell around the minimum. Alternatively we could also memorise x_{k-3} once $k>3$ and for the oldest point

- choose whichever x_{k-2}, x_{k-3} gives the smaller $\left|F^{\prime}\right|$ (choose the point closer to the minimum),
- choose x_{k-2}, x_{k-3} to have the sign of F^{\prime} opposite to F_{k-1}^{\prime} (choose the point to bracket the minimum and interpolate rather than extrapolate).

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Alternatives for the computation of x_{k}

iter	x_{k-2}	x_{k-1}	x	$f^{\prime}(k)$	$f(k)$
chronological:					
9,	2.1058	2.1592	2.154544	0.000655	13.924767
10,	2.1592	2.1545	2.154434	-0.000001	13.924767
11,	2.1545	2.1544	2.154435	0.000000	13.924767
smallest gradient (a):					
9,	2.2177	2.1623	$2.154208 ;$	-0.001363	13.924767
10,	2.1623	2.1542	$2.154436 ;$	0.000005	13.924767
11,	2.1542	2.1544	$2.154435 ;$	0.000000	13.924767
bracketing (b):					
9,	2.2177	2.1399	$2.154859 ;$	0.002547	13.924767
10,	2.2177	2.1549	$2.154422 ;$	-0.000074	13.924767
11,	2.1549	2.1544	$2.154435 ;$	0.000000	13.924767

Properties of the secant method

- Needs computation of gradients,
- Works with first derivatives only, could converge to a maximum if the assumption that $F^{\prime \prime}>0$ in $[a, b]$ is violated,
- Converges better than the bisection method,
- Flexibility in how to choose x_{k} based on $x_{k-1}, x_{k-2}, .$. ,
- Can be generalised to multi-variate problems, is the basis for some important methods such as steepest-descent and BFGS.

Higher-order secant methods

- The secant method as described performs linear interpolation on the gradient values at the end of the bracketing interval: hence it reconstructs a quadratic.
- However, with F_{k-1}, F_{k-2} and $F_{k-1}^{\prime}, F_{k-2}^{\prime}$ we have 4 pieces of data, so we could reconstruct a cubic.
- Using also the new value $F k$ and $F^{\prime} k$ we have 6 pieces of data, so we could reconstruct a quintic.
- Higher-order polynomial fits exhibit strong oscillations as the polynomial is forced to interpolate the data points, rather than approximate them. So in practice, use higher-order only if the function is found to be locally uni-modal

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

\qquad
\qquad
\qquad
\qquad
\qquad

Newton's method

The Newton-Raphson method (actually due to Simpson in this form) finds zeroes of function by using Taylor expansion

$$
\begin{equation*}
0=F(x+h)=F(x)+h F^{\prime}(x)+\frac{1}{2} h^{2} F^{\prime \prime}(x)+O\left(h^{3}\right) \tag{8}
\end{equation*}
$$

Differentiating (??) w.r.t. h allows us to find zeroes of the gradient.

$$
0=F^{\prime}(x+h)=F^{\prime}(x)+h F^{\prime \prime}(x)+\frac{1}{2} h^{2} F^{\prime \prime \prime}(x)+O\left(h^{3}\right)
$$

After neglecting higher terms and using $x=x_{k}, x_{k+1}=x_{k}+h$

$$
x_{k+1}=x_{k}-\frac{F^{\prime}(x)}{F^{\prime \prime}(x)}
$$

Interpretation of Newton's method

Newton's method can be interpreted as using the tangent of the gradient to find the zero of the gradient.

Gradient of the tank surface $S: d S / d x_{2}$.

Convergence of Newton's method

Assuming that we are in a close neighbourhood of the minimum of a continuous and differentiable function, i.e.

- the second derivative $F^{\prime \prime}>0$,
- and the third derivatives are bounded by some value M

We can then show that the error of successive iterates $e_{k}=x^{*}-x_{k}$ are related as

$$
e_{k+1}=e_{k}^{2} \frac{F^{\prime \prime \prime}}{F^{\prime \prime}}
$$

i.e. the error reduces quadratically with each iteration.

Newton's method has quadratic convergence

Newton's method: univariate tank example

iter	x	$f^{\prime \prime}$	f^{\prime}	f
1,	1.0000	$42.000000 ;$	-18.000000	21.000000
2,	1.4286	$15.720000 ;$	-6.942857	16.040816
3,	1.8702	$8.114707 ;$	-1.977493	14.191634
4,	2.1139	$6.234415 ;$	-0.247768	13.929753
5,	2.1537	$6.004299 ;$	-0.004629	13.924768
6,	2.1544	$6.000002 ;$	-0.000002	13.924767
7,	2.1544	$6.000000 ;$	-0.000000	13.924767

Difficulties with Newton's method

- What if $F^{\prime \prime}<0$? Newton's method will happily converge to a maximum. All it is concerned about is to reduce the gradient, not to maximise the second derivative.
- What if h is so large that $F_{k+1}^{\prime \prime}>0$? Newton's method may recover in the next step, but large steps may lead outside of the validity of F.
- What if $F^{\prime \prime}=0$? Division by zero! Will occur for a linear univariate function or a saddlepoint in multivariate functions.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(2)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of unstable Newton's method

Minimise $F(x)$ varying x :

$$
\min _{x} F(x)=x^{3}-3 x^{2}
$$

Example of unstable Newton's method

Minimise $F(x)$ varying x :

$$
\min _{x} F(x)=x^{3}-3 x^{2}
$$

The second derivative is $F^{\prime \prime}(x)=6 x-6$. A starting value of $x_{1}=1$ leads to division by zero:

iter	x	$f^{\prime \prime}$	f^{\prime}	f
warning: division by zero				
1,	1.0000	$0.000000 ;$	-3.000000	-2.000000
2,	lnf	$\operatorname{Inf} ;$	NaN	NaN

(Inf stands for "infinity",
NaN stands for "not a number", resulting from the division by zero.)

Cubic function: alternate starting value

Starting with $x_{1}=1.1$ to the right of the inflexion point we find the minimum:

iter	x	$f^{\prime \prime}$	f^{\prime}	f
1,	1.1000	$0.600000 ;$	-2.970000	-2.299000
2,	6.0500	$30.300000 ;$	73.507500	111.637625
3,	3.6240	$15.744059 ;$	17.656284	8.195401
4,	2.5026	$9.015318 ;$	3.772997	-3.115397
5,	2.0840	$6.504261 ;$	0.525451	-3.978216
6,	2.0033	$6.019547 ;$	0.019579	-3.999968
7,	2.0000	$6.000032 ;$	0.000032	-4.000000
8,	2.0000	$6.000000 ;$	0.000000	-4.000000

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cubic function: alterate starting value

Starting with $x_{1}=0.9$ to the left of the inflexion point we find a maximum:

iter	x	$f^{\prime \prime}$	f^{\prime}	f
1,	0.9000	$-0.600000 ;$	-2.970000	-1.701000
2,	-4.0500	$-30.300000 ;$	73.507500	-115.637625
3,	-1.6240	$-15.744059 ;$	17.656284	-12.195401
4,	-0.5026	$-9.015318 ;$	3.772997	-0.884603
5,	-0.0840	$-6.504261 ;$	0.525451	-0.021784
6,	-0.0033	$-6.019547 ;$	0.019579	-0.000032
7,	-0.0000	$-6.000032 ;$	0.000032	-0.000000
8,	-0.0000	$-6.000000 ;$	0.000000	-0.000000

Safeguarding Newton's method

- revert to a simpler method, e.g. secant, if $F^{\prime \prime}=0$.
- limit the stepwidth h to ensure $F_{k}<F_{k-1}$
- revert to a simpler method, e.g. secant, if $F^{\prime \prime}=0$.
set $a<x_{1}<b$, compute $F_{1}, F_{1}^{\prime}, F_{1}^{\prime \prime}$, set $k=1$
while $\left|F_{k}^{\prime}\right| \geq \varepsilon$
if $F^{\prime \prime}>0$ then
set $\delta x=-F_{k}^{\prime} / F_{k}^{\prime \prime}$
else
set $\delta x=-F_{k}^{\prime} \quad$! note: $F^{\prime \prime}$ not usable, guess step length $\alpha \delta x$
endif
if $\delta x<0$ then $\quad \alpha=\min \left(1,\left(a-x_{k}\right) / \delta x\right)$
else $\quad \alpha=\min \left(1,\left(b-x_{k}\right) / \delta x\right)$
end if
while $F\left(x_{k}+\alpha \delta x\right)>F_{k}$
$\alpha=\alpha / 2$
end while
set $x_{k+1}=x_{k}+\alpha \delta x$, compute $F_{k+1}, F_{k+1}^{\prime}, F_{k+1}^{\prime \prime}$, set $k=k+1$
end while

Summary of safeguarded Newton's method

- If we have a positive second derivative $F^{\prime \prime}\left(x_{k}\right)>0$ then we can use that rate of change of the derivative to estimate a new value for the control variable x_{k+1} to find $F^{\prime}\left(x_{k+1}\right)=0$.
- If not, we need to improvise:
- The secant method, as introduced earlier, used a bracketed interval and we had gradient values at either end x_{a}, x_{b} to find x_{k+1} to find $F^{\prime}\left(x_{k+1}\right)=0$ using linear interpolation of F^{\prime}.
- With Newton's method we'd rather avoid computing the interval end gradients, so if $F^{\prime \prime}$ is not usable, we only have F, F^{\prime}, which does not allow to approximate the step length to find $f^{\prime}=0$.
- Typically methods start with a 'unit' step, whatever the user defines that to be.
- The method of adjusting the step (inner while loop in the algorithm) is not very good. Better methods for finding a good step will be introduced later.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad

Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Organisation of the lectures

1. Univariate optimisation

- Bisection
- Steepest Descent
- Newton's method

2. Multivariate optimisation

- Steepest descent and line-search methods:
- Wolfe and Armijo conditions,
- Newton's method, Trust-region methods,
- Conjugate Gradient, Truncated Newton's, Quasi-Newton methods,

3. Constrained Optimisation:

- Projected gradient methods,
- Penalty methods,
- Exterior and interior point methods, SQP

4. Adjoint methods

- Reversing time
- Automatic Differentiation
- Adjoint CFD codes

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

