
Introduction to Gradient-Based Optimisation
Part 2: Univariate methods

Dr. J.-D. Müller
School of Engineering and Materials Science,

Queen Mary, University of London
j.mueller@qmul.ac.uk

UK Fluids Network SIG on Numerical Optimisation with Fluids
Cambridge, 8-10 August 2018

c© Jens-Dominik Müller, 2011-18, updated 6/8/18

1 / 1

Outline

2 / 1

Organisation of the lectures
1. Univariate optimisation

• Bisection
• Steepest Descent
• Newton’s method

2. Multivariate optimisation
• Steepest descent and line-search methods:
• Wolfe and Armijo conditions,
• Newton’s method, Trust-region methods,
• Conjugate Gradient, Truncated Newton’s, Quasi-Newton

methods,
3. Constrained Optimisation:

• Projected gradient methods,
• Penalty methods,
• Exterior and interior point methods, SQP

4. Adjoint methods
• Reversing time
• Automatic Differentiation
• Adjoint CFD codes

3 / 1

Notes

Notes

Notes

Outline

4 / 1

Tank design
Properties of an open-topped tank with height x1, sides x2, x3:

Volume of a tank: V = x1x2x3 (1)

Surface: S = 2x1x2 + 2x1x3 + x2x3 (2)

Minimise S (3)

Constrained optimisation:

Minimise S subject to V = V ∗ (4)

We can express this constraint by eliminating one of the variables,

x3 = V ∗x−11 x−12

Unconstrained optimisation:

Min S = 2x1x2 + 2V ∗x−12 + V ∗x−11 . (5)

5 / 1

Univariate tank design

To simplify the problem further, assume a square base, x2 = x3.
Then

V = x1x
2
2

S = 4x1x2 + x22

or withV = V ∗ : S = 4V ∗x−12 + x22 .

6 / 1

Notes

Notes

Notes

Outline

7 / 1

Optimality conditions

From simple calculus: a local minimum exists for F (x) if

dF

dx
= F ′(x) = 0 and

d2F

dx2
= F ′′(x) > 0 (6)

If (??) is satisfied for x = x∗ and

F (x) ≥ F (x∗) for all x , (7)

then x∗ is a global minimum.

8 / 1

Outline

9 / 1

Notes

Notes

Notes

The bisection method

Simple (but inefficient) idea: given a bracketing interval, i.e. it
contains a minimum, a ≤ x∗ ≤ b, successively half the interval
around the minimum (see Bartholomew-Biggs, section 2.2).

set xa = a, xb = b
do

compute Fa = F (xa),Fb = F (xb)

set xM = 1
2 (xa + xb), xl = 1

2 (xa + xM), xr = 1
2 (xM + xb)

compute Fl = F (xl), ,Fm = F (xm),Fr = F (xr)

compute Fmin = min{Fa,Fl ,Fm,Fr ,Fb}

if Fmin = Fa or Fmin = Fl then xb = xM ,
else if Fmin = Fm then xa = xl , xb = xr ,
else xa = xM .

while |xb − xa| ≥ ε

10 / 1

Bisection on tank design problem I

11 / 1

Bisection on tank design problem II

minS = 4V ∗x−12 + x22 with V ∗ = 5

iter xA xL xM xR xB fmin
1, 1.0000 2.0000 3.0000 4.0000 5.000000 14.000000
2, 1.0000 1.5000 2.0000 2.5000 3.000000 14.000000
3, 1.5000 1.7500 2.0000 2.2500 2.500000 13.951389
4, 2.0000 2.1250 2.2500 2.3750 2.500000 13.927390
5, 2.0000 2.0625 2.1250 2.1875 2.250000 13.927390
6, 2.0625 2.0938 2.1250 2.1562 2.187500 13.924776
7, 2.1250 2.1406 2.1562 2.1719 2.187500 13.924776
8, 2.1406 2.1484 2.1562 2.1641 2.171875 13.924776
9, 2.1484 2.1523 2.1562 2.1602 2.164062 13.924776

10, 2.1523 2.1543 2.1562 2.1582 2.160156 13.924767
11, 2.1523 2.1533 2.1543 2.1553 2.156250 13.924767
12, 2.1533 2.1538 2.1543 2.1548 2.155273 13.924767

12 / 1

Notes

Notes

Notes

Properties of the bisection method

• User has to specify the initial bracketing interval xA ≤ x ≤ xB
which needs to contain a minimum, although there are
algorithms for this (see B-B, 2.2).

• The algorithm finds any minimum in the bracket, not
necessarily the lowest minimum in the bracket

• Convergence to the optimum is rather slow and depends on
the width of the initial bracket and the sought width of the
final bracket ε:

N ≥ log10(xB − xA) + log10 ε

log10(2)

• The bisection-method is ’gradient-free’, we do not need to
compute gradients for it.

13 / 1

Outline

14 / 1

The secant method

Again, start from a bracketing interval but use gradient information
to estimate the location of the minimum in the bracket.
Bracketing implies here that xa < xb, F ′(xa) < 0, F ′(xb) > 0 and
F ′′ > 0. Also, assume F is twice continuously differentiable.

set x1 = a, x2 = b
compute F ′1 = F ′(x1),F ′2 = F ′(x2)

set k = 2
do

set k = k + 1
! Use linear interpolation to find F ′(xk) = 0 using xk−1, xk−2

set xk = xk−2 −
F ′k−2

F ′k−1−F
′
k−2

(xk−1 − xk−2)

compute F ′k = F ′(xk)

while |F ′k | ≥ ε

15 / 1

Notes

Notes

Notes

Secant method on tank example

16 / 1

Secant method on tank example

iter xk−2 xk−1 x f ′(k) f (k)

3, 1.0000 5.0000 3.647059 5.790476 18.784909
4, 5.0000 3.6471 1.349327 -8.286233 16.642888
5, 3.6471 1.3493 2.701883 2.664106 14.702418
6, 1.3493 2.7019 2.372820 1.193416 14.059064
7, 2.7019 2.3728 2.105796 -0.298623 13.931973
8, 2.3728 2.1058 2.159240 0.028765 13.924836
9, 2.1058 2.1592 2.154544 0.000655 13.924767

10, 2.1592 2.1545 2.154434 -0.000001 13.924767
11, 2.1545 2.1544 2.154435 0.000000 13.924767

17 / 1

Alternatives for the computation of xk

The example computed xk from xk−1, xk−2, regardless of how the
iterates fell around the minimum. Alternatively we could also
memorise xk−3 once k > 3 and for the oldest point

• choose whichever xk−2, xk−3 gives the smaller |F ′| (choose the
point closer to the minimum),

• choose xk−2, xk−3 to have the sign of F ′ opposite to F ′k−1
(choose the point to bracket the minimum and interpolate
rather than extrapolate).

18 / 1

Notes

Notes

Notes

Alternatives for the computation of xk

iter xk−2 xk−1 x f ′(k) f (k)

chronological:
9, 2.1058 2.1592 2.154544 0.000655 13.924767

10, 2.1592 2.1545 2.154434 -0.000001 13.924767
11, 2.1545 2.1544 2.154435 0.000000 13.924767
smallest gradient (a):

9, 2.2177 2.1623 2.154208; -0.001363 13.924767
10, 2.1623 2.1542 2.154436; 0.000005 13.924767
11, 2.1542 2.1544 2.154435; 0.000000 13.924767
bracketing (b):

9, 2.2177 2.1399 2.154859; 0.002547 13.924767
10, 2.2177 2.1549 2.154422; -0.000074 13.924767
11, 2.1549 2.1544 2.154435; 0.000000 13.924767

19 / 1

Properties of the secant method

• Needs computation of gradients,

• Works with first derivatives only, could converge to a
maximum if the assumption that F ′′ > 0 in [a, b] is violated,

• Converges better than the bisection method,

• Flexibility in how to choose xk based on xk−1, xk−2, ..,

• Can be generalised to multi-variate problems, is the basis for
some important methods such as steepest-descent and BFGS.

20 / 1

Higher-order secant methods

• The secant method as described performs linear interpolation
on the gradient values at the end of the bracketing interval:
hence it reconstructs a quadratic.

• However, with Fk−1,Fk−2 and F ′k−1,F
′
k−2 we have 4 pieces of

data, so we could reconstruct a cubic.

• Using also the new value Fk and F ′k we have 6 pieces of
data, so we could reconstruct a quintic.

• Higher-order polynomial fits exhibit strong oscillations as the
polynomial is forced to interpolate the data points, rather
than approximate them. So in practice, use higher-order only
if the function is found to be locally uni-modal

21 / 1

Notes

Notes

Notes

Outline

22 / 1

Newton’s method

The Newton-Raphson method (actually due to Simpson in this
form) finds zeroes of function by using Taylor expansion

0 = F (x + h) = F (x) + hF ′(x) +
1

2
h2F ′′(x) + O(h3). (8)

Differentiating (??) w.r.t. h allows us to find zeroes of the gradient.

0 = F ′(x + h) = F ′(x) + hF ′′(x) +
1

2
h2F ′′′(x) + O(h3).

After neglecting higher terms and using x = xk , xk+1 = xk + h

xk+1 = xk −
F ′(x)

F ′′(x)

23 / 1

Interpretation of Newton’s method
Newton’s method can be interpreted as using the tangent of the
gradient to find the zero of the gradient.

Gradient of the tank surface S : dS/dx2.
24 / 1

Notes

Notes

Notes

Convergence of Newton’s method

Assuming that we are in a close neighbourhood of the minimum of
a continuous and differentiable function, i.e.

• the second derivative F ′′ > 0,

• and the third derivatives are bounded by some value M

We can then show that the error of successive iterates
ek = x∗ − xk are related as

ek+1 = e2k
F ′′′

F ′′

i.e. the error reduces quadratically with each iteration.

Newton’s method has quadratic convergence

25 / 1

Newton’s method: univariate tank example

iter x f ′′ f ′ f

1, 1.0000 42.000000; -18.000000 21.000000
2, 1.4286 15.720000; -6.942857 16.040816
3, 1.8702 8.114707; -1.977493 14.191634
4, 2.1139 6.234415; -0.247768 13.929753
5, 2.1537 6.004299; -0.004629 13.924768
6, 2.1544 6.000002; -0.000002 13.924767
7, 2.1544 6.000000; -0.000000 13.924767

26 / 1

Difficulties with Newton’s method

• What if F ′′ < 0? Newton’s method will happily converge to a
maximum. All it is concerned about is to reduce the gradient,
not to maximise the second derivative.

• What if h is so large that F ′′k+1 > 0? Newton’s method may
recover in the next step, but large steps may lead outside of
the validity of F .

• What if F ′′ = 0? Division by zero! Will occur for a linear
univariate function or a saddlepoint in multivariate functions.

27 / 1

Notes

Notes

Notes

Example of unstable Newton’s method
Minimise F (x) varying x :

min
x

F (x) = x3 − 3x2

28 / 1

Example of unstable Newton’s method

Minimise F (x) varying x :

min
x

F (x) = x3 − 3x2

The second derivative is F ′′(x) = 6x − 6. A starting value of
x1 = 1 leads to division by zero:

iter x f ′′ f ′ f

warning: division by zero
1, 1.0000 0.000000; -3.000000 -2.000000
2, Inf Inf; NaN NaN

(Inf stands for “infinity”,
NaN stands for “not a number”, resulting from the division by
zero.)

29 / 1

Cubic function: alternate starting value

Starting with x1 = 1.1 to the right of the inflexion point we find
the minimum:

iter x f ′′ f ′ f

1, 1.1000 0.600000; -2.970000 -2.299000
2, 6.0500 30.300000; 73.507500 111.637625
3, 3.6240 15.744059; 17.656284 8.195401
4, 2.5026 9.015318; 3.772997 -3.115397
5, 2.0840 6.504261; 0.525451 -3.978216
6, 2.0033 6.019547; 0.019579 -3.999968
7, 2.0000 6.000032; 0.000032 -4.000000
8, 2.0000 6.000000; 0.000000 -4.000000

30 / 1

Notes

Notes

Notes

Cubic function: alterate starting value

Starting with x1 = 0.9 to the left of the inflexion point we find a
maximum:

iter x f ′′ f ′ f

1, 0.9000 -0.600000; -2.970000 -1.701000
2, -4.0500 -30.300000; 73.507500 -115.637625
3, -1.6240 -15.744059; 17.656284 -12.195401
4, -0.5026 -9.015318; 3.772997 -0.884603
5, -0.0840 -6.504261; 0.525451 -0.021784
6, -0.0033 -6.019547; 0.019579 -0.000032
7, -0.0000 -6.000032; 0.000032 -0.000000
8, -0.0000 -6.000000; 0.000000 -0.000000

31 / 1

Safeguarding Newton’s method
• revert to a simpler method, e.g. secant, if F ′′ = 0.
• limit the stepwidth h to ensure Fk < Fk−1
• revert to a simpler method, e.g. secant, if F ′′ = 0.

set a < x1 < b, compute F1,F
′
1,F

′′
1 , set k = 1

while |F ′
k | ≥ ε

if F ′′ > 0 then
set δx = −F ′

k/F
′′
k

else
set δx = −F ′

k ! note: F ′′ not usable, guess step length αδx
endif

if δx < 0 then α = min(1, (a− xk)/δx)
else α = min(1, (b − xk)/δx)
end if

while F (xk + αδx) > Fk

α = α/2
end while
set xk+1 = xk + αδx , compute Fk+1,F

′
k+1,F

′′
k+1, set k = k+1

end while 32 / 1

Summary of safeguarded Newton’s method

• If we have a positive second derivative F ′′(xk) > 0 then we
can use that rate of change of the derivative to estimate a
new value for the control variable xk+1 to find F ′(xk+1) = 0.
• If not, we need to improvise:

• The secant method, as introduced earlier, used a bracketed
interval and we had gradient values at either end xa, xb to find
xk+1 to find F ′(xk+1) = 0 using linear interpolation of F ′.

• With Newton’s method we’d rather avoid computing the
interval end gradients, so if F ′′ is not usable, we only have
F ,F ′, which does not allow to approximate the step length to
find f ′ = 0.

• Typically methods start with a ’unit’ step, whatever the user
defines that to be.

• The method of adjusting the step (inner while loop in the
algorithm) is not very good. Better methods for finding a good
step will be introduced later.

33 / 1

Notes

Notes

Notes

Outline

34 / 1

Organisation of the lectures
1. Univariate optimisation

• Bisection
• Steepest Descent
• Newton’s method

2. Multivariate optimisation
• Steepest descent and line-search methods:
• Wolfe and Armijo conditions,
• Newton’s method, Trust-region methods,
• Conjugate Gradient, Truncated Newton’s, Quasi-Newton

methods,
3. Constrained Optimisation:

• Projected gradient methods,
• Penalty methods,
• Exterior and interior point methods, SQP

4. Adjoint methods
• Reversing time
• Automatic Differentiation
• Adjoint CFD codes

35 / 1

Notes

Notes

Notes

