Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton 00000 0000 00000 000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 00000000000000 00000000000 000000000000 00000000000 00000000000 0000000000000000000 000000000000000000000000000000000000	
Introduction to Gradient-Based Optimisation Part 2: Multivariate methods	Notes
Dr. JD. Müller School of Engineering and Materials Science, Queen Mary, University of London j.mueller@qmul.ac.uk	
UK Fluids Network SIG on Numerical Optimisation with Fluids Cambridge, 8-10 August 2018	
© Jens-Dominik Müller, 2011-18, updated 8/8/18	
1/53	
Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton	Notes

Some simple multi-variate examples

Multivariate optimality conditions

The steepest descent method

Wolfe conditions for inexact line searches

Newton's Method

Conjugate Gradient methods

Truncated Newton's method

Quasi-Newton methods

							2 / 53
Examples •0000	Optimality 0000	Steepest descent	Wolfe conditions		Conjugate Grad.	Truncated Newton	Quasi-Newton
			Ou	tline			
Sc	ome sim	ple multi-va	ariate examp	oles			
М	lultivaria	ate optimali	ty condition				
Т	he steep	est descent	method				
W	/olfe cor	ditions for	inexact line	search			
N	ewton's	Method					
С	onjugate	e Gradient n	nethods				
Tr	runcated	Newton's	method				
Q	uasi-Nev	wton metho					

Example I: Tank design

Properties of a tank:

Volume of a tank:
$$V = x_1 x_2 x_3$$
 (1)
Surface: $S = 2x_1 x_2 + 2x_1 x_3 + x_2 x_3$ (2)

Express this constraint by eliminating one of the variables, $x_3 = V^* x_1^{-1} x_2^{-1}$ Unconstrained optimisation:

Min
$$S = 2x_1x_2 + 2V^*x_2^{-1} + V^*x_1^{-1}$$
. (3)

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

Gradient-free: the Nelder-Mead simplex method

- An equivalent of the bisection method, does not require explicit computation of the gradient.
- Reconstruct simple (linear) behaviour by evaluating the function at the vertices of a simplex, e.g. triangle in bi-variate cases:
- Adapt the locations of the vertices to bracket the minimum

 $(\ensuremath{\mathsf{Source: http://www.brnt.eu/}})$ For details of the algorithm, see B-B 5.2

Notes

5 / 53

Notes

Multivariate optimality conditions II

In mono-variate calculus: a local minimum exists for F(x) if

$$\frac{dF}{dx} = F'(x) = 0$$
 and $\frac{d^2F}{dx^2} = F''(x) > 0$ (4)

If (4) is satisfied for $x = x^*$ and

$$F(x) \ge F(x^*)$$
 for all x , (5)

then x^* is a global minimum.

How to extend this to the multi-variate case?

					10 / 53
Examples Optimalia	ty Steepest descent	Wolfe conditions	Newton Conjugate Grad	• Truncated Newton	Quasi-Newton
	Multivar	iate optir	mality conditi	ons III	
r			$\frac{1}{2}s^{T}(\nabla^{2}F)s+c$	0(5353)	
			$\frac{-s}{2}(\sqrt{-F})s + 0$	$O(\delta x^3, \delta y^3)$	
	variate calcul $\nabla F < 0$, w		ent.		
	a stationary p				
	a minimum <i>F</i> vicinity of <i>x</i>		For any $x eq x^*$, F $x^* < arepsilon$.	$F(x) > F(x^*)$	in
4. Th	at is: $s^T (\nabla^2)$	F) $s > 0$ for	$ \boldsymbol{s} < \varepsilon.$		
5. A r	matrix <i>H</i> for	which $s^T H$	s > 0 is called point	ositive-definite	9.

						11/53
Examples	Optimality 0000	Steepest descent		Newton Conjugate Grad.	Truncated Newton	
			Ou	tline		
S	ome sim	ple multi-va	ariate examp			
Ν	lultivaria	ate optimali	ty condition			
т	he steep	oest descent	method			
V	Volfe cor	nditions for	inexact line	searches		
Ν	lewton's	Method				
С	onjugate	e Gradient n	nethods			
Т	runcated	d Newton's	method			
Q	uasi-Ne	wton metho				

Examples Optimality Steepest descent Wolfe conditions Newton 00000 0000 0000 00000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000 0000000000 0000000000 000000000000000 000000000000000000000000000000000000	Conjugate Grad. Truncated Newton Quasi-Newton 0000000000 00 000000000	
Steepest Des	Notes	
Cascade		
A Range West Crater East Crater B Car R Point Success		
Examples Optimality Steepest descent Wolfe conditions Newton	13 / 53 Conjugate Grad. Truncated Newton Quasi-Newton	
Steepest descent a	algorithm	Notes
set $k = 1$, $x_k = x_{start}$ do compute $F(x_k)$, $\nabla F(x_k)$ set $p_k = -\nabla F(x_k)$ find <i>s</i> to minimise $\varphi(s) = F(x_k + sp_k)$! set $x_{k+1} = x_k + sp_k$ set $k = k + 1$ while $ \nabla F(x_k) \ge \varepsilon$	line search	
Finding the <i>best s</i> along p_k is called a	line search	
Examples Optimality Steepest descent Wolfe conditions Newton 00000 00000 00000000000 000000000000000000000000000000000000		
Exact and inexact li	Notes	
 If we minimise F(x_k+s p_k) exactly exact line search. At this minimum the search direct 		
 to the gradient ∇F. This is typically very expensive and any other states and the second states and the second states and the second states and the second states are states as a second state state and the second states are states as a second state state state. 		
 are only looking along the gradient Typically <i>inexact</i> line searches are reduction in F(x_k+s p_k) is sufficie 	used: a reasonable	
• What is reasonable?		

- What is *reasonable*?
- We need to formulate *descent conditions*.
- We need to compute an estimate for *s*.

Convergence of the steepest descent method
Under the condition that the Hessian (matrix of second derivatives) of F is positive-definite,
$ x_{k+1} - x^* < \mathcal{K} x_k - x^* $
i.e. the steepest descent method converges linearly.
16 Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-New
Outline
Outline Some simple multi-variate examples
Some simple multi-variate examples
Some simple multi-variate examples Multivariate optimality conditions
Some simple multi-variate examples Multivariate optimality conditions The steepest descent method
Some simple multi-variate examples Multivariate optimality conditions The steepest descent method Wolfe conditions for inexact line searches
Some simple multi-variate examples Multivariate optimality conditions The steepest descent method Wolfe conditions for inexact line searches Newton's Method
Some simple multi-variate examples Multivariate optimality conditions The steepest descent method Wolfe conditions for inexact line searches Newton's Method Conjugate Gradient methods
Some simple multi-variate examples Multivariate optimality conditions The steepest descent method Wolfe conditions for inexact line searches Newton's Method Conjugate Gradient methods Truncated Newton's method

First Wolfe condition

First Wolfe condition:

$$p^{T}g_{k} \leq -\eta_{0} ||p|| ||g_{k}||$$

where $g_k =
abla F(x_k)$. Typically $\eta_0 = 0.01$.

- Recall that the cosine of the angle ϕ between vectors p, g is given as $\cos \phi = \frac{p^T g}{||p|| \cdot ||g||}$.
- This is a stronger condition than $p^T g < 0$.
- This condition requires the angle between -g and p to be smaller than $a\cos(\eta_0)$.

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

Second Wolfe condition

Second Wolfe condition:

$$F(x_k+s\,p_k)-F(x_k)\leq \eta_1 sp^{\,\prime}g_k$$

with $0.0 \leq \eta_1 \leq 0.5$, typically $\eta_1 = 0.1$.

- requires that the actual decrease $F(x_k+s p_k) F(x_k)$ is at least a fraction η_1 of the predicted linear decrease sp^Tg_k ,
- we can always achieve this by reducing the step s:for an infinitesimally small step s → 0 the linear approximation becomes exact and F(x_k+s p_k) F(x_k) = sp^Tg_k.

Third Wolfe condition

We want to progress toward the minimum, hence reduce the gradient along the search direction:

$$p_{k}^{T} \nabla F(x_{k} + s \, p_{k}) \ge (1 - \eta_{2}) p_{k}^{T} \nabla F(x_{k}) = .(1 - \eta_{2}) p_{k}^{T} g_{k}.$$
(6)

(Recall that for descent $p'_k \nabla F(x_k) = p'_k g_k < 0$). We compare changes in gradient, so this is also called the 'curvature' condition.

We don't want to evaluate $\nabla F(x_k+s p_k)$, but can approximate this using the secant along the search direction p

$$abla F(x_k+sp_k) pprox rac{F(x_k+sp_k)-F(x_k)}{s||p||}$$

The curvature condition (6) can then be approximated as

$$\frac{F(x_k+sp_k)-F(x_k)}{s||p||} \ge (1-\eta_2)\frac{p^Tg_k}{||p||}$$
$$F(x_k+sp_k)-F(x_k) \ge (1-\eta_2)sp^Tg_k$$

Notes

20 / 53

Notes

while $(D(s) > 1 - \eta_2)$ set set $s = \min(Cs, \frac{0.5s}{1-D(s)})$, $s_{min} = s$! step is too small, enlarge compute $F(x_k + s p_k)$, D(s)end while

while (
$$D(s) < \eta_1$$
 and $s > s_{min}$)
set $s = \max(cs, \frac{0.5s}{1-D(s)})$! step too large, still > s_{min} , reduce
compute $F(x_k + s p_k)$, $D(s)$

end while

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton 00000 00000 00000000000 000000000000000000000000000000000000	
Outline	Notes
Some simple multi-variate examples	
Multivariate optimality conditions	
The steepest descent method	
Wolfe conditions for inexact line searches	
Newton's Method	
Conjugate Gradient methods	
Truncated Newton's method	
Quasi-Newton methods	

 Z8 / 53

 Examples
 Optimality
 Steepest descent
 Wolfe conditions
 Newton
 Conjugate Grad.
 Truncated Newton
 Quasi-Newton

 00000
 00000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

Quadratic models

The steepest-descent method only uses first derivatives to determine the search direction, what if we used a quadratic to point us to the minimum $x^* = x + p$?

$$F(x+p) = F(x) + p^{T}g + \frac{1}{2}p^{T}Gp + O(||p^{3}||)$$

Gradient and Hessian of Q are

$$\nabla F(x+p) = Gp+g+O(||p^2||), \quad \nabla^2 F(x+p) = \nabla^2 F(x) = G+O(||p^1||)$$

In the minimum $\nabla F(x) = 0$ and G is positive-definite

$$p = -G^{-1}g$$

 $Gp = -g$

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

Newton's method

Netwon's method with a *safeguarded* line-search:

```
set x_1, k = 1 ! starting point

do

compute g_k = \nabla F(x_k)

if ||\nabla F(x_k)|| > \varepsilon

compute G_k = \nabla^2 F(x_k)

if G_k is positive-definite then

solve G_k p_k = -g_k ! Netwon

else

p_k = -g_k ! Steepest-Descent

endif

find s to minimise F(x_k + sp_k) ! line search

set x_{k+1} = x_k + sp_k, k = k+1

endif

while ( ||g_k\rangle|| > \varepsilon )
```

29 / 53

Notes

Drawbacks of Newton's method

Newton

Truncated Newton

Truncated Newton

Wolfe conditions

Optimality Steepest descent

- The second derivatives in the Hessian, or more efficiently Hessian-vector products) need to be computed, which is complex and expensive
- Multi-variate optimisation problems often are multi-modal with many local extrema. Checking for positive-definiteness requires computation of the full Hessian, which is very expensive in memory and operations.
- It needs *safeguarding*, e.g. with a line-search to avoid divergence in non-convex regions.

31 / 53

Notes

Quasi-Newtor

Notes

Trust-region methods

Newton

Conjugate Grad

So far the approach was a) choose a search direction, then find a function-reducing step-length along it.

Alternatively, fix a step-length (e.g. based on the validity of a quadratic model), then find a minimising direction.

$$\min_{p} F(x+p) + p^{T}g_{k} + \frac{1}{2}p^{T}Gp + O(||p^{3}||), \quad \text{s.t.} \quad ||p||_{2} \leq \Delta.$$

This is equivalent to adding a (sufficiently large) diagonal term to the Hessian, which makes the Hessian diagonally dominant and hence positive-definite. The search direction is

$$(\lambda I + G_k)p_k = -g_k$$

Increase the trust region radius if we find the quadratic model prediction very accurate at x_{k+1} , decrease if very inaccurate.

- Hence need to estimate λ .
- Still need to compute expensive second derivatives

Pain")

What if we picked our search directions to solve for each direction only once:

In the general case, we would need to know the solution to be able to do that.

						38 / 53
Examples	Optimality 0000	Steepest descent	Wolfe conditions		Truncated Newton	Quasi-Newton
				~	 	

Orthogonal Directions for quadratic functions

As a special case, if the function is exactly quadratic, we can pick directions that do not need to be repeated:

The directions are orthogonal in a space scaled by the matrix A, or they are "A-orthogonal.

Notes			

Notes

Notes			

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

The Conjugate Gradient method

Basic idea: Compute the Hessian, but memorise past search directions and make them *conjugate* to each other. Quadratic model:

$$Q(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$$

Stationary point for: Ax + b = 0.

Definition: two vectors u, v are *conjugate* w.r.t a matrix A if

 $u^T A v = 0$

Newton Conjugate Grad. Truncated Newton Quasi-Newton

41 / 53

Notes

Explanation of C.G.

Computation of the steplength:

Optimality Steepest descent Wolfe conditions

Examples

$$p_k^T g_{k+1} = p_k^T (A(x_k + sp_k) + b) = 0$$
$$s = -\frac{p_k^T g_k}{p_k^T A p_k}$$

After 2 iterations: $p_1^T g_2 = p_0^T g_2 = 0.$

After k iterations: $p_i^T g_k = 0$ for j = 0, 1, ..., k - 1.

- due to the conjugacy requirement p_kAp_j = 0, the search directions form a basis for a k-dimensional space.
- The k-th gradient is orthogonal to all previous p_i.
- The gradient is restricted to a n k-dimensional subspace.
- The C.G. method converges for an *n*-variate quadratic function in at most *n* iterations.

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

C.G. for non-quadratic functions

- Extension to non-quadratic functions: use C.G. to minimise a local quadratic model. Once this model is (approximately) minimised, restart C.G. with a new model.
- Line-search step can be formulated without computing the Hessian, but exact line search is needed.
- Alternative formulae for β are possible, e.g. Polak-Ribière. They are identical for a quadratic, but differ for a non-quadratic.
- Search directions are no longer truly conjugate, as the Hessian A is no longer constant but changes with x.
- The ultimate convergence rate (near the minimum) is *n*-step quadratic: ||x_k − x^{*}|| ≤ C||x_k − n − x^{*}||², i.e. slower than Newton and Quasi-Newton.

						43 / 53
Examples	Optimality	Steepest descent	Wolfe conditions		Truncated Newton ●○	Quasi-Newton
			0	tline		
			Ou	time		
S	ome sim	ple multi-va	ariate examp			
N	Aultivoria	to optimoli	tu oondition			
	TUTUTARIa	ate optimali	ty condition			
Т	he steep	est descent	method			
V	Volfe cor	nditions for	inexact line	search		
N	outon's	Method				
N	lewton s	ivietnod				
С	onjugate	e Gradient n	nethods			
т	runcated	d Newton's	method			
Q	uasi-Ne	wton metho				

Truncated Newton: the principle

Newton Conjugate Grad.

- The key step in Newton's method is to compute the search direction from the quadratic model solving Gp = -g.
- This is expensive in storage and operations

Optimality Steepest descent Wolfe conditions

- How about solving Gp = -g only approximately (having ensured that G is pos.-def., and then perform a line-search along p?
- Reduce the computational cost of solving Gp = -g, hence iterations become cheaper.
- But lose quadratic convergence, i.e. more iterations.
- Can take advantage of of inexpensive matrix-vector products from algorithmic differentiation (AD), as we can write the iterative solve evaluating only *G_kx*.

Notes

44 / 53

Notes

Truncated Newton Quasi-Newtor

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton 00000 0000 00000 000000 0000000000 00 000000000 00 0000000000 00 0000000000 00 000000000 00 000000000 00 0000000000 00 0000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 000000000 00 0000000000 00 000000000 00 000000000 00 0000000000 00 000000000 00 0000000000 00 0000000000 00 0000000000 00 00000000000 00 0000000000 </th <th></th>	
Outline	Notes
Some simple multi-variate examples	
Multivariate optimality conditions	
The steepest descent method	
Wolfe conditions for inexact line searches	
Newton's Method	
Conjugate Gradient methods	
Truncated Newton's method	
Quasi-Newton methods	

47 / 53

Notes

Quasi-Newton method: algorithm

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

set x_1 ! starting point set $H_1^{-1} = I$! positive-definite approximation to inverse Hessian compute $g_k = \nabla F(x_k)$ **do** k = 1, ...set $p_k = -H_k^{-1}g_k$ find s to minimise $F(x_k + sp_k)$! line search set $x_{k+1} = x_k + sp_k$ compute $g_{k+1} = \nabla F(x_{k+1})$ **exit** if $||\nabla F(x_k)|| \ge \varepsilon$ set $\gamma_k = g_{k+1} - g_k$ set $\delta_k = x_{k+1} - x_k$ find H_{k+1}^{-1} such that $H_{k+1}^{-1}\gamma_k = -\delta_k$! Quasi-Newton **end do**

Quasi-Newton condition

Where does the Quasi-Newton condition $H_{k+1}^{-1}\gamma_k = -\delta_k$ stem from?

Consider a quadratic function F(x) with gradient g

$$F(x) = \frac{1}{2}x^{T}Hx + b^{T}x + g(x) = Hx + b$$

с

then

$$\gamma_k = g_{k+1} - g_k$$

= $(Hx_{k+1} + b) - (Hx_k + b)$
= $H(x_{k+1} - x_k) = H\delta_k$
 $H^{-1}\gamma_k = \delta_k$

If the function F is quadratic, its Hessian G and the approximated inverse Hessian H^{-1} have the same change in gradient g for the same change in x.

mples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

Computation of the inverse Hessian

Use a *low-rank* update to minimise computational effort and not affect existing gradient information

$$H_{k+1}^{-1} = H_k^{-1} + auu^T$$
 or $H_{k+1}^{-1} = H_k^{-1} + buu^T + cvv^T$

The Davidson-Fletcher-Powell (DFP) update is

$$H_{k+1}^{-1} = H_k^{-1} - \frac{H_k^{-1} \gamma_k \gamma_k^T H_k^{-1}}{\gamma_k^T H_k^{-1} \gamma_k} + \frac{\delta_k \delta_k^T}{\delta_k^T \gamma_k}$$

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is

$$H_{k+1}^{-1} = H_k^{-1} - \frac{H_k^{-1} \gamma_k \delta_k^T + \delta_k \gamma_k^T H_k^{-1}}{\delta_k^T \gamma_k} + \left[1 + \frac{\gamma_k^T H_k^{-1} \gamma_k}{\delta_k^T \gamma_k}\right] \frac{\delta_k \delta_k^T}{\delta_k^T \gamma_k}$$

Computation of the inverse Hessian

- Both DFP and BFGS satisfy the Quasi-Newton condition and ensure positive-definiteness of ${\cal H}_{k+1}^{-1},$
- For a perfect line search both updates will produce identical iterates. If F is convex and N-variate, both methods will converge in at most N iterations with $H_N^{-1} = \nabla^2 F^{-1}$.
- BFGS is preferred, as the DFP update is more likely to produce a singular matrix,
- Most popular is the L-BFGS variant that builds up an approximation H to the inverse Hessian using only a the N most recent gradient/variable vectors.

Notes

Notes

49 / 53

Notes

50 / 53

Quasi-Newton

Truncated Newton

Quasi-Newton vs. Newton

- Steepest descent has linear convergence, r = 1,
- In a convex region with $s \to 1$ (full Newton step), Quasi-Newton methods can exhibit super-linear convergence,

$$||x_{k+1} - x^*|| = C||x_k - x^*||^r$$
 with $1 < r < 2$

- Newton's method has quadratic convergence, r = 2.
- The operations count is $O(N^2)$ in Q-N, and $O(N^3)$ in N
- Newton's method will have faster convergence
- Quasi-Newton will have lower operation count and simpler implementation.

53 / 53

Notes