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Example I: Tank design

Properties of a tank:

Volume of a tank: V = x1x2x3 (1)

Surface: S = 2x1x2 + 2x1x3 + x2x3 (2)

Express this constraint by eliminating one of the variables,
x3 = V ∗x−11 x−12

Unconstrained optimisation:

Min S = 2x1x2 + 2V ∗x−12 + V ∗x−11 . (3)
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Example II: Rosenbrock function

Bivariate:

f (x , y) = (1− x)2 + 100(y − x2)2

Global min. at [x , y ] = [1, 1] with
f = 0.

N-variate:

f (x) =

N/2∑
i=1

[100(x22i−1 − x2i )
2

+ (x2i−1 − 1)2].

N = 3: single minimum at
[1, 1, 1],
4 ≤ N ≤ 7 two min., N > 7 no
analytic solution (Source: (Image) Wikipedia)
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Gradient-free: the Nelder-Mead simplex method

• An equivalent of the bisection method, does not require
explicit computation of the gradient.

• Reconstruct simple (linear) behaviour by evaluating the
function at the vertices of a simplex, e.g. triangle in bi-variate
cases:

• Adapt the locations of the vertices to bracket the minimum

(Source: http://www.brnt.eu/)

For details of the algorithm, see B-B 5.2
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Example: Nelder-Mead on Rosenbrock’s function

initial 1 iter 2 iter 3 iter

8 iter 20 iter 70 iter 85 iter

(Source: http://www.brnt.eu/)
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Multivariate Optimality conditions I

Taylor expansion in two variables:

F (x+δx ,y+δy)

= F + Fxδx + Fyδy +

1

2
(Fxxδx

2 + Fxyδxδy + Fyxδyδx + Fyyδy
2) +

O(δx3, δy3)

= F + [δx , δy ]

[
Fx
Fy

]
+

1

2
[δx , δy ]

[
Fxx Fxy
Fyx Fyy

] [
δx
δy

]
+ O(δx3, δy3)

= F + sT∇F +
1

2
sT∇2F s + O(δx3, δy3)

with the step-width s = [δx , δy ]T , the gradient ∇F and the
Hessian ∇2F .
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Multivariate optimality conditions II

In mono-variate calculus: a local minimum exists for F (x) if

dF

dx
= F ′(x) = 0 and

d2F

dx2
= F ′′(x) > 0 (4)

If (4) is satisfied for x = x∗ and

F (x) ≥ F (x∗) for all x , (5)

then x∗ is a global minimum.

How to extend this to the multi-variate case?
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Multivariate optimality conditions III

F (x + s) = F + sT∇F +
1

2
sT (∇2F ) s + O(δx3, δy3)

In multivariate calculus:

1. If sT∇F < 0, we have descent.

2. In a stationary point ∇F = 0.

3. In a minimum F increases for any x 6= x∗, F (x) > F (x∗) in
the vicinity of x∗, i.e. |x − x∗| < ε.

4. That is: sT (∇2F ) s > 0 for |s| < ε.

5. A matrix H for which sTH s > 0 is called positive-definite.
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Steepest Descent

A

B

Steepest Descent:
evaluate the gradient and
follow it.

From A we can descend a
long time.

From B we need to limit
how far we descend, then
pick a new direction at the
saddlepoint.
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Steepest descent algorithm

set k = 1, xk = xstart
do

compute F (xk), ∇F (xk)
set pk = −∇F (xk)
find s to minimise ϕ(s) = F (xk +spk) ! line search
set xk+1 = xk + spk
set k = k + 1

while ||∇F (xk)|| ≥ ε

Finding the best s along pk is called a line search
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Exact and inexact line searches

• If we minimise F (xk+s pk) exactly at each step we perform an
exact line search.

• At this minimum the search direction pk becomes orthogonal
to the gradient ∇F .

• This is typically very expensive and not very effective, as we
are only looking along the gradient line s pk .

• Typically inexact line searches are used: a reasonable
reduction in F (xk +s pk) is sufficient.

• What is reasonable?

• We need to formulate descent conditions.

• We need to compute an estimate for s.
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Convergence of the steepest descent method

Under the condition that the Hessian (matrix of second
derivatives) of F is positive-definite,

||xk+1 − x∗|| < K ||xk − x∗||

i.e. the steepest descent method converges linearly.
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First Wolfe condition

First Wolfe condition:

pTgk ≤ −η0 ||p|| ||gk ||

where gk = ∇F (xk) . Typically η0 = 0.01.

• Recall that the cosine of the angle φ between vectors p, g is

given as cosφ = pT g
||p||·||g || .

• This is a stronger condition than pTg < 0.

• This condition requires the angle between −g and p to be
smaller than acos(η0).
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Second Wolfe condition

Second Wolfe condition:

F (xk +s pk)− F (xk) ≤ η1spTgk

with 0.0 ≤ η1 ≤ 0.5, typically η1 = 0.1.

• requires that the actual decrease F (xk +s pk)− F (xk) is at
least a fraction η1 of the predicted linear decrease spTgk ,

• we can always achieve this by reducing the step s:for an
infinitesimally small step s → 0 the linear approximation
becomes exact and F (xk +s pk)− F (xk) = spTgk .
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Second Wolfe condition

g
k

spT
1η

spTg
k

g
k

sp g
k1η spTF(x+ )−F(x)<=

F(x)

x

sp

admissible

region

• Actual decrease
F (x+sp)− F (x) is
at least a fraction η1
of the predicted
linear decrease
spTgk .

• Condition is satisfied
for steps that are
too small.
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Third Wolfe condition
We want to progress toward the minimum, hence reduce the
gradient along the search direction:

pTk ∇F (xk +s pk) ≥ (1−η2)pTk ∇F (xk) = .(1−η2)pTk gk . (6)

(Recall that for descent pTk ∇F (xk) = pTk gk < 0). We compare
changes in gradient, so this is also called the ‘curvature’ condition.

We don’t want to evaluate ∇F (xk +s pk), but can approximate
this using the secant along the search direction p

∇F (xk +spk) ≈ F (xk +spk)− F (xk)

s||p||

The curvature condition (6) can then be approximated as

F (xk +spk)− F (xk)

s||p||
≥ (1−η2)

pTgk
||p||

F (xk +spk)− F (xk) ≥ (1−η2)spTgk
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Third Wolfe condition

g
k

spT g
k

g
kη

2
spT

F(x)

x

sp

admissible

region

• Actual slope
reduction is at least
a fraction 1−η2,
approximating the
slope at x+sp using
the secant.

• Prevents steps that
are too small.
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Armijo conditions

g
k

g
k

spT
1η

spT g
k

g
kη

2
spT

F(x)

x

sp

admissible

region

• Combining second
and third Wolfe
conditions:

• Step is neither too
large,

• nor too small.
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Interpretation of Wolfe’s conditions

Consider the following expression for the ratio D(s):

D(s) =
F (xk +s pk)− F (xk)

spTgk

s = 0: Using L’Hôpital’s rule, D(0) = 1,

s = s̄: where F (xk +s̄ pk) = F (xk), then D(s̄) = 0,

s = s∗: where s∗ minimises F (xk +s pk), then for a quadratic
function D(s∗) = 0.5.

The second Wolfe cond. bounds s away from s̄ by enforcing
D ≥ η1,

The third Wolfe cond. bounds s away from 0 by enforcing
D ≤ 1− η2.

(Source: See B-B, Sec. 8.1)
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Plot of Wolfe conditions

Quadratic function Non-quadratic function
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Armijo line search

An efficient implementation of Wolfe’s conditions:

choose C > 1, c < 1 and 0 < η1, η2 < 0.5
set s = 1, smin = 0 ! set first step, track a minimal step
compute F (xk), gk
set pk = −gk
compute F (xk +s pk), D(s)

while ( D(s) > 1− η2 )
set s = Cs, smin = s ! step too small, enlarge, update min. step
compute F (xk +s pk), D(s)

end while
while ( D(s) < η1 and s > smin )

set s = cs ! step too large, still larger than smin, reduce
compute F (xk +s pk), D(s)

end while
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Armijo line search, modified

Estimate the position of the minimum along the line pk by fitting a
quadratic, but limiting the step-size s:

choose C > 1, c < 1 and 0 < η1, η2 < 0.5
set s = 1, smin = 0
compute F (xk), gk
set pk = −gk
compute F (xk +s pk), D(s)

while ( D(s) > 1− η2 )
set set s = min(Cs, 0.5s

1−D(s) ), smin = s ! step is too small, enlarge

compute F (xk +s pk), D(s)
end while
while ( D(s) < η1 and s > smin )

set s = max(cs, 0.5s
1−D(s) ) ! step too large, still > smin, reduce

compute F (xk +s pk), D(s)

end while
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Quadratic models

The steepest-descent method only uses first derivatives to
determine the search direction, what if we used a quadratic to
point us to the minimum x∗ = x + p?

F (x + p) = F (x) + pTg +
1

2
pTGp + O(||p3||)

Gradient and Hessian of Q are

∇F (x+p) = Gp+g+O(||p2||), ∇2F (x+p) = ∇2F (x) = G+O(||p1||)

In the minimum ∇F (x) = 0 and G is positive-definite

p = −G−1g
Gp = −g
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Newton’s method

Netwon’s method with a safeguarded line-search:

set x1, k = 1 ! starting point
do

compute gk = ∇F (xk)
if ||∇F (xk)|| > ε

compute Gk = ∇2F (xk)
if Gk is positive-definite then

solve Gkpk = −gk ! Netwon
else

pk = −gk ! Steepest-Descent
endif
find s to minimise F (xk + spk) ! line search
set xk+1 = xk + spk , k = k+1

endif

while ( ||gk)|| > ε )

30 / 53

Notes

Notes

Notes



Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

Drawbacks of Newton’s method

• The second derivatives in the Hessian, or more efficiently
Hessian-vector products) need to be computed, which is
complex and expensive

• Multi-variate optimisation problems often are multi-modal
with many local extrema. Checking for positive-definiteness
requires computation of the full Hessian, which is very
expensive in memory and operations.

• It needs safeguarding, e.g. with a line-search to avoid
divergence in non-convex regions.
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Trust-region methods
So far the approach was a) choose a search direction, then find a
function-reducing step-length along it.
Alternatively, fix a step-length (e.g. based on the validity of a
quadratic model), then find a minimising direction.

min
p

F (x + p) + pTgk +
1

2
pTGp + O(||p3||), s.t. ||p||2 ≤ ∆.

This is equivalent to adding a (sufficiently large) diagonal term to
the Hessian, which makes the Hessian diagonally dominant and
hence positive-definite. The search direction is

(λI + Gk)pk = −gk

Increase the trust region radius if we find the quadratic model
prediction very accurate at xk+1, decrease if very inaccurate.
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Properties of trust region methods

• Better convergence properties than safeguarding with a
line-search as we always use a quadratic model

• Rigorously ensures positive-definiteness of the modified
Hessian.

• λ is proportional to the inverse of the trust region radius ∆.

• The relationship between trust-region radius ∆ and diagonal
increment λ is highly non-linear and cannot be determined
accurately at low computational cost.

• Hence need to estimate λ.

• Still need to compute expensive second derivatives
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A brief review of Steepest-Descent

Quadratic function Contours Gradient vectors

(Source: (Images) J. Shewchuck, “An Introduction to the Conjugate Gradient Method Without the Agonizing

Pain” )
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Positive definite matrices

a: positive definite:
xTAx > 0

b: negative definite:
xTAx < 0

c: positive semi-definite:
xTAx ≥ 0

d: indefinite
(saddlepoint):
xTAx R 0
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Steepest Descent

Later steps often repeat an earlier search direction.
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Orthogonal Directions

What if we picked our search directions to solve for each direction
only once:

In the general case, we would need to know the solution to be able
to do that.
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Orthogonal Directions for quadratic functions

As a special case, if the function is exactly quadratic, we can pick
directions that do not need to be repeated:

The directions are orthogonal in a a space scaled by the matrix A,
or they are “A-orthogonal.
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The Conjugate Gradient method

Basic idea: Compute the Hessian, but memorise past search
directions and make them conjugate to each other.
Quadratic model:

Q(x) =
1

2
xTAx + bTx + c

Stationary point for: Ax + b = 0.

Definition: two vectors u, v are conjugate w.r.t a matrix A if

uTAv = 0
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Conjugate Gradient algorithm

choose x0 ! starting point
compute g0 = Axo + b
set p0 = −g0
do k=0,..

find s to satisfy pTk gk+1 = pTk (A(xk + spk) + b) = 0
set xk+1 = xk + spk
exit if ||gk+1|| ≤ ε
set β =

gT
k+1gk+1

gT
k gk

! Fletcher-Reeves

set pk+1 = −gk+1 + βpk
enddo
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Explanation of C.G.

Computation of the steplength:

pTk gk+1 = pTk (A(xk + spk) + b) = 0

s = −
pTk gk

pTk Apk

After 2 iterations: pT1 g2 = pT0 g2 = 0.

After k iterations: pTj gk = 0 for j = 0, 1, ..., k − 1.

• due to the conjugacy requirement pkApj = 0, the search
directions form a basis for a k-dimensional space.

• The k-th gradient is orthogonal to all previous pj .

• The gradient is restricted to a n − k-dimensional subspace.

• The C.G. method converges for an n-variate quadratic
function in at most n iterations.
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C.G. for non-quadratic functions

• Extension to non-quadratic functions: use C.G. to minimise a
local quadratic model. Once this model is (approximately)
minimised, restart C.G. with a new model.

• Line-search step can be formulated without computing the
Hessian, but exact line search is needed.

• Alternative formulae for β are possible, e.g. Polak-Ribière.
They are identical for a quadratic, but differ for a
non-quadratic.

• Search directions are no longer truly conjugate, as the Hessian
A is no longer constant but changes with x .

• The ultimate convergence rate (near the minimum) is n-step
quadratic: ||xk − x∗|| ≤ C ||xk − n − x∗||2, i.e. slower than
Newton and Quasi-Newton.
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Truncated Newton: the principle

• The key step in Newton’s method is to compute the search
direction from the quadratic model solving Gp = −g .

• This is expensive in storage and operations

• How about solving Gp = −g only approximately (having
ensured that G is pos.-def., and then perform a line-search
along p?

• Reduce the computational cost of solving Gp = −g , hence
iterations become cheaper.

• But lose quadratic convergence, i.e. more iterations.

• Can take advantage of of inexpensive matrix-vector products
from algorithmic differentiation (AD), as we can write the
iterative solve evaluating only Gkx .
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Quasi-Newton methods

We have seen in mono-variate secant methods how to reconstruct
a quadratic or cubic from function and gradient values at the
bracket endpoints.

Can we perform a similar multi-variate reconstruction from
function and gradient values at (nearby) sample points?

Idea: build up a positive-definite approximation of the Hessian H
(or better, of its inverse H−1) using sampled gradient values.
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Quasi-Newton method: algorithm

set x1 ! starting point
set H−1

1 = I ! positive-definite approximation to inverse Hessian
compute gk = ∇F (xk)
do k = 1, ..

set pk = −H−1
k gk

find s to minimise F (xk + spk) ! line search
set xk+1 = xk + spk
compute gk+1 = ∇F (xk+1)
exit if ||∇F (xk)|| ≥ ε
set γk = gk+1 − gk
set δk = xk+1 − xk
find H−1

k+1 such that H−1
k+1γk = −δk ! Quasi-Newton

end do
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Quasi-Newton condition
Where does the Quasi-Newton condition H−1k+1γk = −δk stem
from?
Consider a quadratic function F (x) with gradient g

F (x) =
1

2
xTHx + bT x + c

g(x) = Hx + b

then

γk = gk+1 − gk

= (Hxk+1 + b)− (Hxk + b)

= H(xk+1 − xk) = Hδk

H−1γk = δk

If the function F is quadratic, its Hessian G and the approximated
inverse Hessian H−1 have the same change in gradient g for the
same change in x .
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Computation of the inverse Hessian

Use a low-rank update to minimise computational effort and not
affect existing gradient information

H−1k+1 = H−1k + auuT or H−1k+1 = H−1k + buuT + cvvT

The Davidson-Fletcher-Powell (DFP) update is

H−1k+1 = H−1k −
H−1k γkγ

T
k H−1k

γTk H−1k γk
+
δkδ

T
k

δTk γk

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is

H−1k+1 = H−1k −
H−1k γkδ

T
k + δkγ

T
k H−1k

δTk γk
+

[
1 +

γTk H−1k γk

δTk γk

]
δkδ

T
k

δTk γk
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Computation of the inverse Hessian

• Both DFP and BFGS satisfy the Quasi-Newton condition and
ensure positive-definiteness of H−1k+1,

• For a perfect line search both updates will produce identical
iterates. If F is convex and N-variate, both methods will
converge in at most N iterations with H−1N = ∇2F−1.

• BFGS is preferred, as the DFP update is more likely to
produce a singular matrix,

• Most popular is the L-BFGS variant that builds up an
approximation H to the inverse Hessian using only a the N
most recent gradient/variable vectors.
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Quasi-Newton vs. Newton

• Steepest descent has linear convergence, r = 1,

• In a convex region with s → 1 (full Newton step),
Quasi-Newton methods can exhibit super-linear convergence,

||xk+1 − x∗|| = C ||xk − x∗||r with 1 < r < 2

• Newton’s method has quadratic convergence, r = 2.

• The operations count is O(N2) in Q-N, and O(N3) in N

• Newton’s method will have faster convergence

• Quasi-Newton will have lower operation count and simpler
implementation.
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Organisation of the lectures
1. Univariate optimisation

• Bisection
• Steepest Descent
• Newton’s method

2. Multivariate optimisation
• Steepest descent and line-search methods:
• Wolfe and Armijo conditions,
• Newton’s method, Trust-region methods,
• Conjugate Gradient, Truncated Newton’s, Quasi-Newton

methods,
3. Constrained Optimisation:

• Projected gradient methods,
• Penalty methods,
• Exterior and interior point methods, SQP

4. Adjoint methods
• Reversing time
• Automatic Differentiation
• Adjoint CFD codes
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