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Some simple multi-variate examples
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Example I: Tank design Notes

Properties of a tank:

Volume of a tank: V = x1x0x3 (1)

Surface: S = 2x1x0 + 2x1x3 + X0x3 (2)

Express this constraint by eliminating one of the variables,

X3 = V*xflxgl
Unconstrained optimisation:

Min S =20 +2Vit+ Vil (3)
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Example Il: Rosenbrock function Notes
Bivariate:

f(x,y) = (1 —x)%>+100(y — x?)?

Global min. at [x,y] = [1,1] with
f=0.

N-variate:

N/2

f(x) =_Z[100(x§,-_1 — x0)°

+ (xai-1 — 1)3].

N = 3: single minimum at

[1,1,1],
4 < N<7two min., N >7 no
analytic solution (Source: (Image) Wikipedia)
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Gradient-free: the Nelder-Mead simplex method Notes

® An equivalent of the bisection method, does not require
explicit computation of the gradient.

e Reconstruct simple (linear) behaviour by evaluating the
function at the vertices of a simplex, e.g. triangle in bi-variate

cases:

® Adapt the locations of the vertices to bracket the minimum

X3 X3

X1 = Xp X1 = Xp

X =X Xy =X;

(Source: http://www.brnt.eu/)

For details of the algorithm, see B-B 5.2
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. ! ]
Example: Nelder-Mead on Rosenbrock'’s function Notes
 —
8 iter 20 iter 70 iter 85 iter
(Source: http://www.brnt.eu/)
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Multivariate optimality conditions
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Multivariate Optimality conditions | Notes

Taylor expansion in two variables:

F(x+dx,y+3dy)
= F+ Fdx+ Foy+

1
E(FXX5><2 + Foy0x3y + Fedydx + F,, 0y?) +

0(6x3,6y?)

1
= F +[0x,0y] [ I/::; ] + 5[5X,6y] [ ,’:::: g;i } [ g; ] + 0(6x3,6y%)

= F+4+s'VF+ %sTszs + 0(0x3,0y?)

with the step-width s = [0x,8y] ", the gradient VF and the
Hessian V2F.
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Multivariate optimality conditions Il

In mono-variate calculus: a local minimum exists for F(x) if

daF d2F_ "
E_F(x)_o and W_F(X)>O (4)

If (4) is satisfied for x = x* and
F(x) > F(x*) forall x, (5)

then x* is a global minimum.

How to extend this to the multi-variate case?
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Multivariate optimality conditions Ill

1
F(x+s)=F+s"VF + EST(V2F)5+ 0(6x3,8y3)

In multivariate calculus:
If sTVF < 0, we have descent.
In a stationary point VF = 0.
In a minimum F increases for any x # x*, F(x) > F(x*) in
the vicinity of x*, i.e. |x — x*| <e.
4. Thatis: sT(V2F)s >0 for |s| < e.
5. A matrix H for which s"Hs > 0 is called positive-definite.

ate Grad. Truncated Newton
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The steepest descent method
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Steepest Descent

Steepest Descent:

evaluate the gradient and
follow it.

From A we can descend a
long time.

From B we need to limit
how far we descend, then
pick a new direction at the
saddlepoint.

13/53

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton

00000

0000 [e]e] lele] 00000000000 000000 0000000000 [e]e] 00000000

Steepest descent algorithm

set k=1, Xk = Xstart

do

compute F(xx), VF(xk)

set px = —VF(xx)

find s to minimise ¢(s) = F(xxk+spk) ! line search
set Xk4+1 = Xk + Spk

set k=k+1

while ||[VF(x)|| > ¢

Finding the best s along py is called a line search
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Exact and inexact line searches

e If we minimise F(xx+s px) exactly at each step we perform an

exact line search.

® At this minimum the search direction py becomes orthogonal

to the gradient VF.

e This is typically very expensive and not very effective, as we

are only looking along the gradient line s py.

e Typically inexact line searches are used: a reasonable

reduction in F(xx+s pk) is sufficient.

e What is reasonable?

® We need to formulate descent conditions.

® \We need to compute an estimate for s.
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Convergence of the steepest descent method Note

Under the condition that the Hessian (matrix of second
derivatives) of F is positive-definite,

[Xie41 = x| < Klxe = 7|

i.e. the steepest descent method converges linearly.
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Wolfe conditions for inexact line searches

17/53

Conjugate Grad. Truncated Newton Quasi-Newton

Examples Optimality Steepest descent Wolfe conditions Newton
DO [e]e] 00000000

00000 0000 00000 0@000000000 000

First Wolfe condition Notes

First Wolfe condition:

p gk < —mollpll|lgxl|

where gx = VF(xk) . Typically no = 0.01.

® Recall that the cosine of the angle ¢ between vectors p, g is

e
i _ r's
given as cos ¢ = IGRGE

e This is a stronger condition than p” g < 0.

® This condition requires the angle between —g and p to be

smaller than acos(n).
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Second Wolfe condition

Notes

Second Wolfe condition:

F(xk+s pi) — F(xk) < msp’ gk

with 0.0 < n; < 0.5, typically n; = 0.1.

® requires that the actual decrease F(xx+s px) — F(xk) is at

least a fraction 71 of the predicted linear decrease sp’gy,

® we can always achieve this by reducing the step s:for an
infinitesimally small step s — 0 the linear approximation

becomes exact and F(xk+s px) — F(xk) = sp'gk.
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Second Wolfe condition Notes
F(x+ sp)-F(x)<=n,sp'g,
sp
® Actual decrease
~~~~~~~ . X R F(x+sp) — F(x) is
F) N\ » - . y TSP 8k at least a fraction n;
4 \ of the predicted
\ linear decrease
admissible \ SpTgk spTgk.

region e Condition is satisfied

for steps that are
too small.
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Third Wolfe condition

We want to progress toward the minimum, hence reduce the

Notes

gradient along the search direction:

pi VF(x+spk) = (1—m)pf VF(xi) = .(1—m2)pi gk-  (6)

(Recall that for descent p] VF(xx) = pJgk < 0). We compare

changes in gradient, so this is also called the ‘curvature’ condition.

We don't want to evaluate VF(xx+s px), but can approximate
this using the secant along the search direction p

F(xk+spk) — F(xk
L

The curvature condition (6) can then be approximated as

PTgk

F(xk—i—spk) — F(Xk) > (17772)
s|[pl| - |lpll
T

F(xk+spk) — F(xk) > (1—m2)sp " gk
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Third Wolfe condition Notes
Sp
- )
FO N, |Lw ® Actual slope
i reduction is at least
AN a fraction 1—1p,
admissible\\ T approximating the
region AN P&k slope at x-+sp using
the secant.
\ ® Prevents steps that
n,5P g are too small.
Al
B
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Armijo conditions Notee
Sp
i~ VS
FoO N, [ T . y P Bk .
A = e Combining second
T and third Wolfe
N T conditions:
admissible N spT'g ) )
region K ® Step is neither too
large,
1 ® nor too small.
ﬂgSPTgk
Al
-+ X

st descent  Wolfe conditions
00000008000

d. Truncated Newton Q

Interpretation of Wolfe's conditions Notes

Consider the following expression for the ratio D(s):

_ F(xk—l—spk) — F(Xk)

D(s)

spTgk
s = 0: Using L'Hépital’s rule, D(0) =1,
s = 5. where F(xx+5pk) = F(xk), then D(5) =0,
s = s*: where s* minimises F(xx+s px), then for a quadratic

function D(s*) = 0.5.

The second Wolfe cond. bounds s away from 5 by enforcing

D >m,
The third Wolfe cond. bounds s away from 0 by enforcing
D S 1-— 2.

(Source: See B-B, Sec. 8.1)
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Plot of Wolfe conditions Notes

Bl i el i

" z [ o8 aE
D T 75 25 L
sloplngh = sleclongth =

Quadratic function Non-quadratic function
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Armijo line search Notee

An efficient implementation of Wolfe's conditions:

choose C > 1, c<land 0<m,n <05

sets=1, spin =0 | set first step, track a minimal step
compute F(xk), gk
set px = —8k

compute F(xx+spk), D(s)
while ( D(s) > 1—1, )

set s = Cs, Spin =15 | step too small, enlarge, update min. step
compute F(xx+spx), D(s)

end while

while ( D(s) < 71 and s > spin )
set s = ¢s I step too large, still larger than sp,;,, reduce
compute F(xx+s pk), D(s)

end while

26 /53
Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton
00000 0000 00000 00000000 00e 000000 0000000000 [e]e] 00000000
Armijo line search, modified Notes

Estimate the position of the minimum along the line pj by fitting a
quadratic, but limiting the step-size s:

choose C > 1, c<1land 0 <m,1m2 <05
set s=1, spin =0

compute F(xk), gk
set p = —8k

compute F(xx+spk), D(s)
while (D(s) > 1—1, )

set set s = min(Cs, 13'73&)), Smin = S | step is too small, enlarge

compute F(xx+spk), D(s)
end while
while ( D(s) < n1 and s > Spin )

set s = max(cs, 1_0'73&)) I step too large, still > sy, reduce
compute F(xx+spk), D(s)

end while
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Newton's Method
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Quadratic models

The steepest-descent method only uses first derivatives to
determine the search direction, what if we used a quadratic to
point us to the minimum x* = x 4 p?

F(x+p) = F(x) + 78 + 5p7Go+ O(116])
Gradient and Hessian of Q are
VF(x+p) = Gp+g+O(|Ip*l]), V2F(x+p) = V2F(x) = G+O(|[p']])
In the minimum VF(x) =0 and G is positive-definite

p = —Glg
Gp = -g
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Newton's method

Netwon's method with a safeguarded line-search:

set x1, k =1 starting point
do
compute gx = VF(xx)
if [[VF(xl| > e
compute Gy = V2F(x)
if Gy is positive-definite then
solve Gypx = —gk ! Netwon
else
pxk = —8k | Steepest-Descent
endif
find s to minimise F(xx + spx) ! line search
set Xx4+1 = Xk + Spk, k = k+1
endif
while ( [|gi)l[ >¢)
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Drawbacks of Newton's method

Notes

® The second derivatives in the Hessian, or more efficiently
Hessian-vector products) need to be computed, which is

complex and expensive

® Multi-variate optimisation problems often are multi-modal

with many local extrema. Checking for positive-definiteness
requires computation of the full Hessian, which is very

expensive in memory and operations.

® |t needs safeguarding, e.g. with a line-search to avoid
divergence in non-convex regions.
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Trust-region methods

Notes

So far the approach was a) choose a search direction, then find a

function-reducing step-length along it.

Alternatively, fix a step-length (e.g. based on the validity of a
quadratic model), then find a minimising direction.

. 1
min F(x + p) + plgk+ 5pTGp +0(|p%]), st lpll2 <A,

This is equivalent to adding a (sufficiently large) diagonal term to

the Hessian, which makes the Hessian diagonally dominant and

hence positive-definite. The search direction is

(M + Gk)px = —g«

Increase the trust region radius if we find the quadratic model
prediction very accurate at xx1, decrease if very inaccurate.
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Newton
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Properties of trust region methods

Notes

Better convergence properties than safeguarding with a

line-search as we always use a quadratic model

® Rigorously ensures positive-definiteness of the modified
Hessian.

® ) is proportional to the inverse of the trust region radius A.

® The relationship between trust-region radius A and diagonal

increment A is highly non-linear and cannot be determined
accurately at low computational cost.

® Hence need to estimate .

e Still need to compute expensive second derivatives
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Outline Notes

Conjugate Gradient methods
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A brief review of Steepest-Descent Notes

Examples
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Gradient vectors

Quadratic function Contours

(Source: (Images) J. Shewchuck, “An Introduction to the Conjugate Gradient Method Without the Agonizing

Pain” )
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Positive definite matrices Notes

a: positive definite:

xTAx >0
b: negative definite:

xTAx <0
c: positive semi-definite:

xTAx >0
d: indefinite

(saddlepoint):

xT Ax ; 0
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Steepest Descent

Notes
02 04 06
Later steps often repeat an earlier search direction.
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Orthogonal Directions Notee
What if we picked our search directions to solve for each direction
only once:
In the general case, we would need to know the solution to be able
to do that.
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Orthogonal Directions for quadratic functions Notes

As a special case, if the function is exactly quadratic, we can pick
directions that do not need to be repeated:
€2

The directions are orthogonal in a a space scaled by the matrix A,
or they are “A-orthogonal.
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The Conjugate Gradient method

Notes

Basic idea: Compute the Hessian, but memorise past search
directions and make them conjugate to each other.

Quadratic model:

Q(x) = %XTAX +b'x+c

Stationary point for:  Ax+ b=0.

Definition: two vectors u, v are conjugate w.r.t a matrix A if

uTAv =0
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Conjugate Gradient algorithm Notes

choose xg ! starting point
compute go = Ax, + b

set pp = —8o
do k=0,..

find s to satisfy kang = p,Z—(A(Xk +spk)+b)=0
set Xk+1 = Xk + SP«

exit if ||gki1]| <e
T

set 3 = 9L | Fletcher-Reeves
8 8k

set pry1 = —8k+1 + BPk

enddo

est descent Wolf

Conjugate Grad. Truncated Newton Quasi
O 0000000080 ©

Explanation of C.G.

Notes

Computation of the steplength:

P 8k+1 = Py (A(xk + spk) + b) =0
_ _ PkTgk

Pl APk

After 2 iterations: pngz = png2 =0.
After k iterations: pjTgk =0 for j=0,1,....,k—1.

® due to the conjugacy requirement p Ap; = 0, the search
directions form a basis for a k-dimensional space.

® The k-th gradient is orthogonal to all previous p;.

® The gradient is restricted to a n — k-dimensional subspace.

® The C.G. method converges for an n-variate quadratic
function in at most n iterations.
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C.G. for non-quadratic functions

® Extension to non-quadratic functions: use C.G. to minimise a
local quadratic model. Once this model is (approximately)
minimised, restart C.G. with a new model.

® |ine-search step can be formulated without computing the
Hessian, but exact line search is needed.

® Alternative formulae for 3 are possible, e.g. Polak-Ribiére.
They are identical for a quadratic, but differ for a
non-quadratic.

® Search directions are no longer truly conjugate, as the Hessian
A is no longer constant but changes with x.

® The ultimate convergence rate (near the minimum) is n-step
quadratic: ||x; — x*|| < C||xx — n — x*||?, i.e. slower than
Newton and Quasi-Newton.
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Truncated Newton's method
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Truncated Newton
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Truncated Newton: the principle

® The key step in Newton's method is to compute the search
direction from the quadratic model solving Gp = —g.

® This is expensive in storage and operations

® How about solving Gp = —g only approximately (having
ensured that G is pos.-def., and then perform a line-search
along p?

® Reduce the computational cost of solving Gp = —g, hence
iterations become cheaper.

® But lose quadratic convergence, i.e. more iterations.

® Can take advantage of of inexpensive matrix-vector products
from algorithmic differentiation (AD), as we can write the
iterative solve evaluating only Ggx.
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Quasi-Newton methods
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Quasi-Newton methods Notes

We have seen in mono-variate secant methods how to reconstruct

a quadratic or cubic from function and gradient values at the
bracket endpoints.

Can we perform a similar multi-variate reconstruction from

function and gradient values at (nearby) sample points?

Idea: build up a positive-definite approximation of the Hessian H

(or better, of its inverse H~1) using sampled gradient values.
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Quasi-Newton method: algorithm Notes

set x; ! starting point
set Hl_1 = | | positive-definite approximation to inverse Hessian

compute gx = VF(xk)
dok=1,..

set px = —H, 'gk
find s to minimise F(xx + spx) ! line search
set Xx+1 = Xk + Spk

compute gir1 = VF(xis1)
exit if [|[VF(xk)|| > ¢

set Yk = Bk+1 — 8k
set 0y = Xk+1 — Xk

find H;:+11 such that Hk;ll'yk = —0k ! Quasi-Newton
end do
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Quasi-Newton condition
Where does the Quasi-Newton condition Hk_J:ﬂk = —J) stem

Notes

from?
Consider a quadratic function F(x) with gradient g

1
F(x) = EXTHX +bTx+c

g(x)=Hx+b

then

Tk = Bk+1 — 8k

= (Hxk+1 + b) — (Hxk + b)

= H(Xk+1 - Xk) = H(Sk
H™ e = 6

If the function F is quadratic, its Hessian G and the approximated
inverse Hessian H~! have the same change in gradient g for the

same change in x.
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Computation of the inverse Hessian

Notes

Use a low-rank update to minimise computational effort and not
affect existing gradient information

-1 _ -1 T -1 _ -1 T T
Hk+1_Hk + auu or Hk+1_Hk + buu' + cwv

The Davidson-Fletcher-Powell (DFP) update is

H;l’)/k’y/Z-Hl:l + (5;(5[

-1 _ g1
Hk+1_Hk B

e Hi ik 4k
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is

H 0T + Siy T H Y

-1 —1
Hol, = Ht - + 14

v H;lvk] 567

7 Yk STy | 8w
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Computation of the inverse Hessian

Notes

e Both DFP and BFGS satisfy the Quasi-Newton condition and
ensure positive-definiteness of Hk_jl,

® For a perfect line search both updates will produce identical
iterates. If F is convex and N-variate, both methods will

converge in at most N iterations with Hy! = V2F~1.
® BFGS is preferred, as the DFP update is more likely to

produce a singular matrix,
® Most popular is the L-BFGS variant that builds up an

approximation H to the inverse Hessian using only a the N
most recent gradient/variable vectors.
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Quasi-Newton vs. Newton

Notes

® Steepest descent has linear convergence, r = 1,

® In a convex region with s — 1 (full Newton step),
Quasi-Newton methods can exhibit super-linear convergence,

[|xkt1 — x*|| = Cllxk — x™||" with 1<r<2

® Newton's method has quadratic convergence, r = 2.

The operations count is O(N?) in Q-N, and O(N3) in N

® Newton’s method will have faster convergence

® Quasi-Newton will have lower operation count and simpler

implementation.
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Organisation of the lectures Notee

1. Univariate optimisation

® Bisection
® Steepest Descent

® Newton's method
2. Multivariate optimisation

® Steepest descent and line-search methods:
® Wolfe and Armijo conditions,

® Newton's method, Trust-region methods,
® Conjugate Gradient, Truncated Newton's, Quasi-Newton

methods,
3. Constrained Optimisation:
® Projected gradient methods,

® Penalty methods,
® Exterior and interior point methods, SQP

4. Adjoint methods
® Reversing time
® Automatic Differentiation
® Adjoint CFD codes
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