Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(C) Jens-Dominik Müller, 2011-18, updated 8/8/18

							$1 / 53$
Examples 00000	Optimality 0000	Steepest descent 00000	Wolfe conditions 00000000000	Newton 000000	Conjugate Grad. 0000000000	Truncated Newton 00	Quasi-Newton 00000000

Outline

Some simple multi-variate examples
Multivariate optimality conditions
The steepest descent method
Wolfe conditions for inexact line searches
Newton's Method

Conjugate Gradient methods
Truncated Newton's method
Quasi-Newton methods

Outline

Some simple multi-variate examples
Multivariate optimality conditions
The steepest descent method
Wolfe conditions for inexact line searches
Newton's Method
Conjugate Gradient methods
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quasi-Newton methods

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example I: Tank design

Properties of a tank:
Volume of a tank:
$V=x_{1} x_{2} x_{3}$
(1)
Surface:
$S=2 x_{1} x_{2}+2 x_{1} x_{3}+x_{2} x_{3}$

Notes
\qquad
\qquad
\qquad
Express this constraint by eliminating one of the variables,
$x_{3}=V^{*} x_{1}^{-1} x_{2}^{-1}$
Unconstrained optimisation:
$\operatorname{Min} \quad S=2 x_{1} x_{2}+2 V^{*} x_{2}^{-1}+V^{*} x_{1}^{-1}$. \qquad

Example II: Rosenbrock function

Bivariate:
$f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}$
Global min. at $[x, y]=[1,1]$ with
$f=0$.
N-variate:

$$
\begin{aligned}
& f(\mathbf{x})=\sum_{i=1}^{N / 2} {\left[100\left(x_{2 i-1}^{2}-x_{2 i}\right)^{2}\right.} \\
&\left.+\left(x_{2 i-1}-1\right)^{2}\right] .
\end{aligned}
$$

$N=3$: single minimum at
[1, 1, 1],
$4 \leq N \leq 7$ two min., $N>7$ no analytic solution

(Source: (Image) Wikipedia)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- An equivalent of the bisection method, does not require explicit computation of the gradient.
- Reconstruct simple (linear) behaviour by evaluating the function at the vertices of a simplex, e.g. triangle in bi-variate cases:
- Adapt the locations of the vertices to bracket the minimum
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
(Source: http://www.brnt.eu/)
For details of the algorithm, see B-B 5.2

Example: Nelder-Mead on Rosenbrock's function

1 iter

2 iter

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8 iter

20 iter

70 iter

85 iter

(Source: http://www.brnt.eu/)

							7 / 53
Examples 00000	Optimality	Steepest descent 00000	Wolfe conditions 00000000000	Newton 000000	Conjugate Grad. 0000000000	Truncated Newton -	Quasi-Newton 00000000

Outline

Some simple multi-variate examples
Multivariate optimality conditions

The steepest descent method
Wolfe conditions for inexact line searches
Newton's Method

Conjugate Gradient methods
Truncated Newton's method
Quasi-Newton methods

Multivariate Optimality conditions I

Taylor expansion in two variables:

$$
\begin{aligned}
F(x+ & \delta x, y+\delta y) \\
= & F+F_{x} \delta x+F_{y} \delta y+ \\
& \frac{1}{2}\left(F_{x x} \delta x^{2}+F_{x y} \delta x \delta y+F_{y x} \delta y \delta x+F_{y y} \delta y^{2}\right)+ \\
& O\left(\delta x^{3}, \delta y^{3}\right) \\
= & F+[\delta x, \delta y]\left[\begin{array}{c}
F_{x} \\
F_{y}
\end{array}\right]+\frac{1}{2}[\delta x, \delta y]\left[\begin{array}{cc}
F_{x x} & F_{x y} \\
F_{y x} & F_{y y}
\end{array}\right]\left[\begin{array}{c}
\delta x \\
\delta y
\end{array}\right]+O\left(\delta x^{3}, \delta y^{3}\right) \\
= & F+s^{T} \nabla F+\frac{1}{2} s^{T} \nabla^{2} F s+O\left(\delta x^{3}, \delta y^{3}\right)
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
with the step-width $s=[\delta x, \delta y]^{T}$, the gradient ∇F and the Hessian $\nabla^{2} F$.

In mono-variate calculus: a local minimum exists for $F(x)$ if

$$
\begin{equation*}
\frac{d F}{d x}=F^{\prime}(x)=0 \quad \text { and } \quad \frac{d^{2} F}{d x^{2}}=F^{\prime \prime}(x)>0 \tag{4}
\end{equation*}
$$

If (4) is satisfied for $x=x^{*}$ and

$$
\begin{equation*}
F(x) \geq F\left(x^{*}\right) \text { for all } x, \tag{5}
\end{equation*}
$$

then x^{*} is a global minimum.

How to extend this to the multi-variate case?

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Multivariate optimality conditions III

$$
F(x+s)=F+s^{T} \nabla F+\frac{1}{2} s^{T}\left(\nabla^{2} F\right) s+O\left(\delta x^{3}, \delta y^{3}\right)
$$

In multivariate calculus:

1. If $s^{T} \nabla F<0$, we have descent.
2. In a stationary point $\nabla F=0$.
3. In a minimum F increases for any $x \neq x^{*}, F(x)>F\left(x^{*}\right)$ in the vicinity of x^{*}, i.e. $\left|x-x^{*}\right|<\varepsilon$.
4. That is: $s^{T}\left(\nabla^{2} F\right) s>0$ for $|s|<\varepsilon$.
5. A matrix H for which $s^{T} H s>0$ is called positive-definite.

Outline

Some simple multi-variate examples

Multivariate optimality conditions

The steepest descent method
Wolfe conditions for inexact line searches
Newton's Method
Conjugate Gradient methods
Truncated Newton's method

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quasi-Newton methods

Steepest Descent:
evaluate the gradient and follow it.
From A we can descend a long time.
From B we need to limit how far we descend, then pick a new direction at the saddlepoint.

Examples	Optimality	Steepest descent	Wolfe conditions	Newton Conjugate Grad.	Truncated Newton Quasi-Newton		
00000	0000	$00 \bullet 00$	00000000000	000000	0000000000	00	00000000

Steepest descent algorithm

set $k=1, x_{k}=x_{\text {start }}$
do
compute $F\left(x_{k}\right), \nabla F\left(x_{k}\right)$
set $p_{k}=-\nabla F\left(x_{k}\right)$
find s to minimise $\varphi(s)=F\left(x_{k}+s p_{k}\right)$! line search
set $x_{k+1}=x_{k}+s p_{k}$
set $k=k+1$
while $\left\|\nabla F\left(x_{k}\right)\right\| \geq \varepsilon$

Finding the best s along p_{k} is called a line search

14 / 53

Exact and inexact line searches

- If we minimise $F\left(x_{k}+s p_{k}\right)$ exactly at each step we perform an exact line search.
- At this minimum the search direction p_{k} becomes orthogonal to the gradient ∇F.
- This is typically very expensive and not very effective, as we are only looking along the gradient line $s p_{k}$.
- Typically inexact line searches are used: a reasonable reduction in $F\left(x_{k}+s p_{k}\right)$ is sufficient.
- What is reasonable?
- We need to formulate descent conditions.
- We need to compute an estimate for s.

Convergence of the steepest descent method

Under the condition that the Hessian (matrix of second derivatives) of F is positive-definite,

$$
\left\|x_{k+1}-x^{*}\right\|<K\left\|x_{k}-x^{*}\right\|
$$

i.e. the steepest descent method converges linearly.

					$16 / 53$		
Examples	Optimality	Steepest descent	Wolfe conditions	Newton	Conjugate Grad.	Truncated Newton	Quasi-Newton
00000	0000	00000	$\bullet 000000000$	000000	000000000	00	0000000

Outline

Some simple multi-variate examples
Multivariate optimality conditions
The steepest descent method
Wolfe conditions for inexact line searches
Newton's Method
Conjugate Gradient methods
Truncated 'Newton's method
Quasi-Newton methods

First Wolfe condition

First Wolfe condition:

$$
p^{T} g_{k} \leq-\eta_{0}\|p\|\left\|g_{k}\right\|
$$

where $g_{k}=\nabla F\left(x_{k}\right)$. Typically $\eta_{0}=0.01$.

- Recall that the cosine of the angle ϕ between vectors p, g is given as $\cos \phi=\frac{p^{\top} g}{\|p\| \cdot\|g\|}$.
- This is a stronger condition than $p^{T} g<0$.
- This condition requires the angle between $-g$ and p to be smaller than $\operatorname{acos}\left(\eta_{0}\right)$.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\square

Second Wolfe condition

Second Wolfe condition:

$$
F\left(x_{k}+s p_{k}\right)-F\left(x_{k}\right) \leq \eta_{1} s p^{T} g_{k}
$$

with $0.0 \leq \eta_{1} \leq 0.5$, typically $\eta_{1}=0.1$.

- requires that the actual decrease $F\left(x_{k}+s p_{k}\right)-F\left(x_{k}\right)$ is at least a fraction η_{1} of the predicted linear decrease $s p^{T} g_{k}$,
- we can always achieve this by reducing the step s :for an infinitesimally small step $s \rightarrow 0$ the linear approximation becomes exact and $F\left(x_{k}+s p_{k}\right)-F\left(x_{k}\right)=s p^{T} g_{k}$.

Second Wolfe condition

- Actual decrease $F(x+s p)-F(x)$ is at least a fraction η_{1} of the predicted linear decrease $s p^{\top} g_{k}$.
- Condition is satisfied for steps that are too small.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Actual slope reduction is at least a fraction $1-\eta_{2}$, approximating the slope at $x+s p$ using the secant.
- Prevents steps that are too small.

Armijo conditions

- Combining second and third Wolfe conditions:
- Step is neither too large,
- nor too small.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation of Wolfe's conditions

Consider the following expression for the ratio $D(s)$:

$$
D(s)=\frac{F\left(x_{k}+s p_{k}\right)-F\left(x_{k}\right)}{s p^{T} g_{k}}
$$

$s=0$: Using L'Hôpital's rule, $D(0)=1$,
$s=\bar{s}$: where $F\left(x_{k}+\bar{s} p_{k}\right)=F\left(x_{k}\right)$, then $D(\bar{s})=0$,
$s=s^{*}$: where s^{*} minimises $F\left(x_{k}+s p_{k}\right)$, then for a quadratic function $D\left(s^{*}\right)=0.5$.

The second Wolfe cond. bounds s away from \bar{s} by enforcing

$$
D \geq \eta_{1},
$$

The third Wolfe cond. bounds s away from 0 by enforcing

$$
D \leq 1-\eta_{2} .
$$

(Source: See B-B, Sec. 8.1)

Quadratic function

Non-quadratic function

Armijo line search

An efficient implementation of Wolfe's conditions:

```
choose \(C>1, c<1\) and \(0<\eta_{1}, \eta_{2}<0.5\)
set \(s=1, s_{\text {min }}=0 \quad\) ! set first step, track a minimal step
compute \(F\left(x_{k}\right), g_{k}\)
set \(p_{k}=-g_{k}\)
compute \(F\left(x_{k}+s p_{k}\right), D(s)\)
while ( \(\mathrm{D}(\mathrm{s})>1-\eta_{2}\) )
    set \(s=C s, s_{\text {min }}=s \quad\) ! step too small, enlarge, update min. step
    compute \(F\left(x_{k}+s p_{k}\right), D(s)\)
end while
while ( \(\mathrm{D}(\mathrm{s})<\eta_{1}\) and \(s>s_{\text {min }}\) )
    set \(s=c s \quad\) ! step too large, still larger than \(s_{\text {min }}\), reduce
    compute \(F\left(x_{k}+s p_{k}\right), D(s)\)
end while
```

Armijo line search, modified
Estimate the position of the minimum along the line p_{k} by fitting a quadratic, but limiting the step-size s :
choose $C>1, c<1$ and $0<\eta_{1}, \eta_{2}<0.5$
set $s=1, s_{\text {min }}=0$
compute $F\left(x_{k}\right), g_{k}$
set $p_{k}=-g_{k}$
compute $F\left(x_{k}+s p_{k}\right), D(s)$
while ($\mathrm{D}(\mathrm{s})>1-\eta_{2}$)
set set $s=\min \left(C s, \frac{0.5 s}{1-D(s)}\right), s_{\text {min }}=s \quad$! step is too small, enlarge
compute $F\left(x_{k}+s p_{k}\right), D(s)$
end while
while ($\mathrm{D}(\mathrm{s})<\eta_{1}$ and $s>s_{\text {min }}$)
set $s=\max \left(c s, \frac{0.5 s}{1-D(s)}\right) \quad$! step too large, still $>s_{\min }$, reduce
compute $F\left(x_{k}+s p_{k}\right), D(s)$
end while
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Some simple multi-variate examples
Multivariate optimality conditions
The steepest descent method
Wolfe conditions for inexact line searches

Newton's Method

\qquad
Conjugate Gradient methods
Truncated Newton's method

Quasi-Newton methods

$28 / 53$

Quadratic models

The steepest-descent method only uses first derivatives to determine the search direction, what if we used a quadratic to point us to the minimum $x^{*}=x+p$?

$$
F(x+p)=F(x)+p^{T} g+\frac{1}{2} p^{T} G p+O\left(\left\|p^{3}\right\|\right)
$$

Gradient and Hessian of Q are
$\nabla F(x+p)=G p+g+O\left(\left\|p^{2}\right\|\right), \quad \nabla^{2} F(x+p)=\nabla^{2} F(x)=G+O\left(\left\|p^{1}\right\|\right)$
In the minimum $\nabla F(x)=0$ and G is positive-definite

$$
\begin{aligned}
p & =-G^{-1} g \\
G p & =-g
\end{aligned}
$$

29 / 53

Newton's method

Netwon's method with a safeguarded line-search:

```
set }\mp@subsup{x}{1}{},k=1!\mathrm{ starting point
```

do
compute $g_{k}=\nabla F\left(x_{k}\right)$
if $\left\|\nabla F\left(x_{k}\right)\right\|>\varepsilon$
compute $G_{k}=\nabla^{2} F\left(x_{k}\right)$
if G_{k} is positive-definite then
solve $G_{k} p_{k}=-g_{k} \quad$! Netwon
else
$p_{k}=-g_{k} \quad!$ Steepest-Descent
endif
find s to minimise $F\left(x_{k}+s p_{k}\right)$! line search
set $x_{k+1}=x_{k}+s p_{k}, k=k+1$
endif
while ($\left.\| g_{k}\right) \|>\varepsilon$)

Drawbacks of Newton's method

- The second derivatives in the Hessian, or more efficiently Hessian-vector products) need to be computed, which is complex and expensive
- Multi-variate optimisation problems often are multi-modal with many local extrema. Checking for positive-definiteness requires computation of the full Hessian, which is very expensive in memory and operations.
- It needs safeguarding, e.g. with a line-search to avoid divergence in non-convex regions.

Trust-region methods

So far the approach was a) choose a search direction, then find a function-reducing step-length along it.
Alternatively, fix a step-length (e.g. based on the validity of a quadratic model), then find a minimising direction.

$$
\min _{p} F(x+p)+p^{T} g_{k}+\frac{1}{2} p^{T} G p+O\left(\left\|p^{3}\right\|\right), \quad \text { s.t. } \quad\|p\|_{2} \leq \Delta
$$

This is equivalent to adding a (sufficiently large) diagonal term to the Hessian, which makes the Hessian diagonally dominant and hence positive-definite. The search direction is

$$
\left(\lambda I+G_{k}\right) p_{k}=-g_{k}
$$

Increase the trust region radius if we find the quadratic model prediction very accurate at x_{k+1}, decrease if very inaccurate.

$32 / 53$

Examples	Optimality	Steepest descent	Wolfe conditions	Newton	Conjugate Grad.	Truncated Newton	Quasi-Newton
00000	0000	00000	00000000000	00000	0000000000	00	00000000

Properties of trust region methods

- Better convergence properties than safeguarding with a line-search as we always use a quadratic model
- Rigorously ensures positive-definiteness of the modified Hessian.
- λ is proportional to the inverse of the trust region radius Δ.
- The relationship between trust-region radius Δ and diagonal increment λ is highly non-linear and cannot be determined accurately at low computational cost.
- Hence need to estimate λ.
- Still need to compute expensive second derivatives

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square -
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Some simple multi-variate examples
Multivariate optimality conditions
The steepest descent method
Wolfe conditions for inexact line searches

Newton's Method

Conjugate Gradient methods

Truncated Newton's method
Quasi-Newton methods

					$34 / 53$		
Examples	Optimality	Steepest descent	Wolfe conditions	Newton	Conjugate Grad.	Truncated Newton	Quasi-Newton
00000	0000	00000	00000000000	000000	$0 \bullet 0000000$	00	00000000

A brief review of Steepest-Descent

Quadratic function

Gradient vectors
(Source: (Images) J. Shewchuck, "An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain")

Positive definite matrices

a: positive definite:

$$
x^{T} A x>0
$$

b: negative definite:

$$
x^{\top} A x<0
$$

c: positive semi-definite:
$x^{T} A x \geq 0$
d: indefinite
(saddlepoint):
$x^{T} A x \gtreqless 0$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Steepest Descent

Later steps often repeat an earlier search direction.

$37 / 53$

Examples Optimality Steepest descent Wolfe conditions Newton Conjugate Grad. Truncated Newton Quasi-Newton 000000000 00000000000000 000000 0000000000

Orthogonal Directions

What if we picked our search directions to solve for each direction only once:

In the general case, we would need to know the solution to be able to do that.

Orthogonal Directions for quadratic functions

As a special case, if the function is exactly quadratic, we can pick directions that do not need to be repeated:

The directions are orthogonal in a a space scaled by the matrix A, or they are " A-orthogonal.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Conjugate Gradient method

Basic idea: Compute the Hessian, but memorise past search directions and make them conjugate to each other.
Quadratic model:

$$
Q(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

Stationary point for: $A x+b=0$.

Definition: two vectors u, v are conjugate w.r.t a matrix A if

$$
u^{T} A v=0
$$

Conjugate Gradient algorithm

```
choose \(x_{0}\) ! starting point
compute \(g_{0}=A x_{0}+b\)
set \(p_{0}=-g_{0}\)
do \(k=0, .\).
    find \(s\) to satisfy \(p_{k}^{T} g_{k+1}=p_{k}^{T}\left(A\left(x_{k}+s p_{k}\right)+b\right)=0\)
    set \(x_{k+1}=x_{k}+s p_{k}\)
    exit if \(\left\|g_{k+1}\right\| \leq \varepsilon\)
    set \(\beta=\frac{g_{k+1}^{t} I_{k+1}}{g_{k}^{T} g_{k}}\) ! Fletcher-Reeves
    set \(p_{k+1}=-g_{k+1}+\beta p_{k}\)
enddo
```


Explanation of C.G.

Computation of the steplength:

$$
\begin{aligned}
p_{k}^{T} g_{k+1} & =p_{k}^{T}\left(A\left(x_{k}+s p_{k}\right)+b\right)=0 \\
s & =-\frac{p_{k}^{T} g_{k}}{p_{k}^{T} A p_{k}}
\end{aligned}
$$

After 2 iterations: $p_{1}^{T} g_{2}=p_{0}^{T} g_{2}=0$.
After k iterations: $p_{j}^{T} g_{k}=0$ for $j=0,1, \ldots, k-1$.

- due to the conjugacy requirement $p_{k} A p_{j}=0$, the search directions form a basis for a k-dimensional space.
- The k-th gradient is orthogonal to all previous p_{j}.
- The gradient is restricted to a n - k-dimensional subspace.
- The C.G. method converges for an n-variate quadratic function in at most n iterations.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

C.G. for non-quadratic functions

- Extension to non-quadratic functions: use C.G. to minimise a local quadratic model. Once this model is (approximately) minimised, restart C.G. with a new model.
- Line-search step can be formulated without computing the Hessian, but exact line search is needed.
- Alternative formulae for β are possible, e.g. Polak-Ribière. They are identical for a quadratic, but differ for a non-quadratic.
- Search directions are no longer truly conjugate, as the Hessian A is no longer constant but changes with x.
- The ultimate convergence rate (near the minimum) is n-step quadratic: $\left\|x_{k}-x^{*}\right\| \leq C\left\|x_{k}-n-x^{*}\right\|^{2}$, i.e. slower than Newton and Quasi-Newton.

Outline

Some simple multi-variate examples
Mu'tivariate optimality condétions

The steepest descent method
Wolfe conditions for inexact line searches
Newton's Method

Conjugate Gradient methods
Truncated Newton's method
Quasi-Newton methods

- The key step in Newton's method is to compute the search direction from the quadratic model solving $G p=-g$.
- This is expensive in storage and operations
- How about solving $G p=-g$ only approximately (having ensured that G is pos.-def., and then perform a line-search along p ?
- Reduce the computational cost of solving $G p=-g$, hence iterations become cheaper.
- But lose quadratic convergence, i.e. more iterations.
- Can take advantage of of inexpensive matrix-vector products from algorithmic differentiation (AD), as we can write the iterative solve evaluating only $G_{k} x$.

Outline

Some simple multi-variate examples

Multivariate optimality conditions

The steepest descent method

Wolfe conditions for inexact line searches

Newton's Method

\qquad
Conjugate Gradient methods
Truncated Newton's method
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
Quasi-Newton methods

We have seen in mono-variate secant methods how to reconstruct a quadratic or cubic from function and gradient values at the bracket endpoints.

Can we perform a similar multi-variate reconstruction from function and gradient values at (nearby) sample points?

Idea: build up a positive-definite approximation of the Hessian H (or better, of its inverse H^{-1}) using sampled gradient values.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad -00000

Quasi-Newton method: algorithm
set x_{1} ! starting point
set $H_{1}^{-1}=I!$ positive-definite approximation to inverse Hessian
compute $g_{k}=\nabla F\left(x_{k}\right)$
do $k=1$, ..
set $p_{k}=-H_{k}^{-1} g_{k}$
find s to minimise $F\left(x_{k}+s p_{k}\right)$! line search
set $x_{k+1}=x_{k}+s p_{k}$
compute $g_{k+1}=\nabla F\left(x_{k+1}\right)$
exit if $\left\|\nabla F\left(x_{k}\right)\right\| \geq \varepsilon$
set $\gamma_{k}=g_{k+1}-g_{k}$
set $\delta_{k}=x_{k+1}-x_{k}$
find H_{k+1}^{-1} such that $H_{k+1}^{-1} \gamma_{k}=-\delta_{k}$! Quasi-Newton
end do

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quasi-Newton condition

Where does the Quasi-Newton condition $H_{k+1}^{-1} \gamma_{k}=-\delta_{k}$ stem from?
Consider a quadratic function $F(x)$ with gradient g

$$
\begin{aligned}
& F(x)=\frac{1}{2} x^{\top} H x+b^{T} x+c \\
& g(x)=H x+b
\end{aligned}
$$

then

$$
\begin{aligned}
\gamma_{k} & =g_{k+1}-g_{k} \\
& =\left(H x_{k+1}+b\right)-\left(H x_{k}+b\right) \\
& =H\left(x_{k+1}-x_{k}\right)=H \delta_{k}
\end{aligned}
$$

$$
H^{-1} \gamma_{k}=\delta_{k}
$$

If the function F is quadratic, its Hessian G and the approximated inverse Hessian H^{-1} have the same change in gradient g for the same change in x.

Steepest descent	Wolfe conditions	Newton	Conjugate Grad.	Truncated Newton	Quasi-Newton
000000	00000000000	000000	0000000000	00	$0000 \bullet 000$

Computation of the inverse Hessian

Use a low-rank update to minimise computational effort and not affect existing gradient information

$$
H_{k+1}^{-1}=H_{k}^{-1}+a u u^{T} \quad \text { or } \quad H_{k+1}^{-1}=H_{k}^{-1}+b u u^{T}+c v v^{\top}
$$

The Davidson-Fletcher-Powell (DFP) update is

$$
H_{k+1}^{-1}=H_{k}^{-1}-\frac{H_{k}^{-1} \gamma_{k} \gamma_{k}^{T} H_{k}^{-1}}{\gamma_{k}^{T} H_{k}^{-1} \gamma_{k}}+\frac{\delta_{k} \delta_{k}^{T}}{\delta_{k}^{T} \gamma_{k}}
$$

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is

$$
H_{k+1}^{-1}=H_{k}^{-1}-\frac{H_{k}^{-1} \gamma_{k} \delta_{k}^{T}+\delta_{k} \gamma_{k}^{T} H_{k}^{-1}}{\delta_{k}^{T} \gamma_{k}}+\left[1+\frac{\gamma_{k}^{T} H_{k}^{-1} \gamma_{k}}{\delta_{k}^{T} \gamma_{k}}\right] \frac{\delta_{k} \delta_{k}^{T}}{\delta_{k}^{T} \gamma_{k}}
$$

Computation of the inverse Hessian

- Both DFP and BFGS satisfy the Quasi-Newton condition and ensure positive-definiteness of H_{k+1}^{-1},
- For a perfect line search both updates will produce identical iterates. If F is convex and N-variate, both methods will converge in at most N iterations with $H_{N}^{-1}=\nabla^{2} F^{-1}$.
- BFGS is preferred, as the DFP update is more likely to produce a singular matrix,
- Most popular is the L-BFGS variant that builds up an approximation H to the inverse Hessian using only a the N most recent gradient/variable vectors.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

都
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quasi-Newton vs. Newton

- Steepest descent has linear convergence, $r=1$,
- In a convex region with $s \rightarrow 1$ (full Newton step),

Quasi-Newton methods can exhibit super-linear convergence,

$$
\left\|x_{k+1}-x^{*}\right\|=C\left\|x_{k}-x^{*}\right\|^{r} \quad \text { with } \quad 1<r<2
$$

- Newton's method has quadratic convergence, $r=2$.
- The operations count is $O\left(N^{2}\right)$ in Q-N, and $O\left(N^{3}\right)$ in N
- Newton's method will have faster convergence
- Quasi-Newton will have lower operation count and simpler implementation.

Examples	Optimality	Steepest descent	Wolfe conditions	Newton	Conjugate Grad.	Truncated Newton Quasi-Newton	
00000	0000	00000	000000000000	000000	00000000000	00	

Organisation of the lectures

1. Univariate optimisation

- Bisection
- Steepest Descent
- Newton's method

2. Multivariate optimisation

- Steepest descent and line-search methods:
- Wolfe and Armijo conditions,
- Newton's method, Trust-region methods,
- Conjugate Gradient, Truncated Newton's, Quasi-Newton methods,

3. Constrained Optimisation:

- Projected gradient methods,
- Penalty methods,
- Exterior and interior point methods, SQP

4. Adjoint methods

- Reversing time
- Automatic Differentiation
- Adjoint CFD codes

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

