Notes
Introduction to Gradient-Based Optimisation
Part 4: Constrained optimisation

Dr. J.-D. Müller
School of Engineering and Materials Science,
Queen Mary, University of London
j.mueller@qmul.ac.uk

UK Fluids Network SIG on Numerical Optimisation with Fluids
Cambridge, 8-10 August 2018
(C) Jens-Dominik Müller, 2011-18, updated 8/8/18

							$1 / 40$
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	Summary 000	Exercises -

Organisation of the lectures

1. Univariate optimisation

- Bisection, Steepest Descent, Newton's method

2. Multivariate optimisation

- Steepest descent, Newton's method
- and line-search methods: Wolfe and Armijo conditions,
- Quasi-Newton methods,

3. Constrained Optimisation:

- Projected gradient methods,
- Penalty methods, exterior and interior point methods,
- SQP

4. Adjoint methods

- Reversing time, Automatic Differentiation
- Adjoint CFD codes

5. Gradient computation

- Manual derivation, Finite Differences
- Algorithmic and automatic differentiation, fwd and bkwd.

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP	SQP	Summary	Exercises
000	000000000000	000	00000000	000	0000	000	0

Outline

Examples
Optimality conditions and the Lagrangian
Projected gradient methods
Penalty function methods

Equality-constrained quadratic programming
Sequential Quadratic Programming
Summary

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\square
\square

Outline

Examples
Optimality conditions and the Lagrangian
Projected gradient methods

Penalty function methods

Equality-constrained quadratic programming
Sequential Quadratic Programming
Summary

							4 / 40
$\begin{aligned} & \text { Examples } \\ & \bigcirc \bullet 0 \end{aligned}$	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Examples of constrained optimisation

A typical optimisation application in aerodynamics is to minimise the drag of a profile (aircraft wing, wind-turbine blade).
Aerodynamic drag increases due to wetted area (skin friction), but also due to generated lift (induced drag due to tip vortices).
Hence simply minimising drag would shrink the profile to a point with zero lift.
Constrained optimisation allows to prevent this:

$$
\min c_{D} \quad \text { s.t. } \quad c_{L}=c_{L, \text { Target }}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad the lift.

							5/40
Examples -	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & \text { OOO } \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	Summary 000	Exercises。

Tank example

Properties of a tank:

$$
\begin{array}{ll}
\text { Volume of a tank: } & \\
\text { Surface: } & \\
\text { Sur } & =2 x_{1} x_{3} \\
x_{1} x_{2}+2 x_{1} x_{3}+x_{2} x_{3} \tag{2}
\end{array}
$$

Constrained optimisation:

$$
\text { Minimise } \quad S \quad \text { subject to } \quad V=V^{*}
$$

(3)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Examples

Optimality conditions and the Lagrangian

Projected gradient methods

Penalty function methods

Equality-constrained quadratic programming

Sequential Quadratic Programming

Summary

							7 / 40
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions $0 \bullet 000000000$	Projected gradients 000	Penalty functions 0000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & \text { OOOO } \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Optimality conditions

The system to optimise is

$$
\min _{x} f(x) \quad \text { s.t. } \quad c_{i}(x)=0, \quad i=1, k
$$

with k equality constraints and n controls x.
Consider a line-search as a constraint, i.e. find the minimum along that line:

- The magnitude of the gradient is not zero in the minimum along the constraint direction,
- But the projection of the gradient along the constraint direction is zero. The gradient is perpendicular to the constraint.
- The constraints restrict the optimum to reside within a sub-manifold of f.

							8 / 40
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions $00 \bullet 00000000$	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & \text { OOOO } \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

A very simple example of constrained optimisation

$$
f(x, y)=x+y
$$

s.t. $\quad x^{2}+y^{2}=1$
(Source: Wikipedia)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Saddlepoint example with line constraint
$f(x, y)=x^{2} y+x$
s.t. $\quad x-2 y=-5$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 / 40

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP	SQP	Summary	Exercises
000	00000000000	000	00000000	000	0000	000	0

Saddlepoint example with circle constraint

$f(x, y)=x^{2} y+x$
s.t. $\quad x^{2}+y^{2}=3$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 / 40

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP	SQP	Summary	Exercises
000	00000000000	000	00000000	000	0000	000	0

Condition for a constrained minimum

- The gradient of the function is perpendicular to the direction of the constraint.
- The gradient of the function and the gradient of the constraint are parallel:

$$
\begin{align*}
& \frac{\partial f}{\partial x}=\lambda \frac{\partial c}{\partial x} \\
& \frac{\partial f}{\partial x}-\lambda \frac{\partial c}{\partial x}=0 \tag{4}
\end{align*}
$$

where λ is an "arbitrary" scalar.
Definition of feasibility:

- Any point x that satisfies the constraints is called a feasible point
- If x is a feasible point, any direction z for which $x+\varepsilon z$ is also feasible is called a feasible direction.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

First-order optimality conditions: the Lagrangian

If the constraints are satisfied, i.e. $c_{i}=0$, then we can add multiples of the constraints to the function to be minimised

$$
L(x, \lambda)=f(x)+\sum_{k} \lambda_{i} c_{i}(x)=f(x)+\lambda^{T} c
$$

This is called the Lagrangian of the optimisation problem.
Consider x which satisfies the constraints. We need the constraints also to be satisfied for a change in design variables $x+\delta x$.

$$
\begin{aligned}
L(x+\delta x, \lambda) & =f(x+\delta x)+\sum_{k} \lambda_{i} c_{i}(x+\delta x) \\
& =f(x)+\frac{\partial f}{\partial x} \delta x+\sum_{k} \lambda_{i}\left(c_{i}(x)+\frac{\partial c_{i}}{\partial x} \delta x\right)+O\left(\delta x^{2}\right)
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13 / 40

Examples

First-order constrained optimality condition

The change in Lagrangian is

$$
\begin{aligned}
\delta L & =L(x+\delta x, \lambda)-L(x, \lambda) \\
& =\frac{\partial f}{\partial x} \delta x+\sum_{k} \lambda_{i} \frac{\partial c_{i}}{\partial x} \delta x+O\left(x^{2}\right) \\
& =\frac{\partial f}{\partial x} \delta x+\lambda^{T} \frac{\partial c}{\partial x} \delta x+O\left(\delta x^{2}\right)
\end{aligned}
$$

In the minimum no further reduction is possible,

$$
\frac{\partial L\left(x^{*}\right)}{\partial x}=\frac{\partial f\left(x^{*}\right)}{\partial x}+\lambda^{T} \frac{\partial c\left(x^{*}\right)}{\partial x}=0
$$

which corresponds to Eq. (4).

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP	SQP	Summary	Exercises
000	$00000000 \bullet 000$	000	00000000	000	0000	000	0

Second-order constrained optimality condition

In the minimum the gradient of the function is perpendicular to the direction of the constraint, so for any feasible direction z :

$$
z^{T} \nabla F\left(x^{*}\right)=0
$$

In the minimum the constraint is satisfied and the Hessian along the constraint direction is positive (positive-definite):

$$
z^{T} \nabla^{2} F\left(x^{*}\right) z>0
$$

for any feasible direction z.
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of constrained minimisation, first-order optimality

$$
\min _{x} F(x)=x_{1}^{2}+3 x_{1} x_{2} \quad \text { s.t. } \quad c_{1}(x)=x_{1}+5 x_{2}-1=0
$$

Optimalitiy conditions:

$$
\begin{aligned}
\frac{\partial F}{\partial x_{1}}-\lambda_{1} \frac{\partial c_{1}}{\partial x_{1}} & =2 x_{1}+3 x_{2}-\lambda_{1}=0 \\
\frac{\partial F}{\partial x_{2}}-\lambda_{1} \frac{\partial c_{1}}{\partial x_{2}} & =3 x_{1}-5 \lambda_{1}=0 \\
c_{1} & =x_{1}+5 x_{2}-1=0
\end{aligned}
$$

Leading to the minimum with

$$
x_{1}^{*}=-\frac{3}{4}, \quad x_{2}^{*}=\frac{7}{20}, \quad \lambda_{1}=-\frac{9}{20}
$$

(Source: Bartholomew-Biggs)

The λ_{i} are called the Lagrange multipliers. What is their meaning?

$$
\begin{aligned}
L(x, \lambda) & =f(x)+\sum_{k} \lambda_{i} c_{i}(x)=f(x)+\lambda^{T} c \\
\frac{\partial L}{\partial c_{i}} & =\lambda_{i}
\end{aligned}
$$

- the Lagrange multiplier measures the sensitivity of the objective with respect to changes in the constraint.
- It is the rate of change of the objective when the constraint is violated.

							17 / 40
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions 0000000000 -	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & \text { OOO } \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Example for the meaning of Lagrange multipliers
Tank example (Open-topped):

$$
\min S\left(x_{1}, x_{2}, x_{3}\right) \quad \text { s.t. } \quad x_{1} x_{2} x_{3}=V^{*}=20
$$

Solution:

$$
x_{1}=1.71, x_{2}=x_{3}=3.42, \quad S^{*}=36.09, \quad \lambda=1.17
$$

How does the minimal surface S^{*} change if we modify the target volume to, say, $V^{*}=20.5$?

$$
\delta S^{*}=\lambda \delta V^{*}=1.17 * 0.5=0.585
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Examples

Optimality conditions and the Lagrangian
Projected gradient methods
Penalty function methods

Equality-constrained quadratic programming

Sequential Quadratic Programming

Summary

							19 / 40
Examples 000	Optimality condtitions 00000000000	Projected gradients $0 \bullet 0$	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & \text { OOOO } \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Jacobian of the constraints

- A feasible direction z does not violate the constraints:

$$
c\left(x^{*}+\varepsilon z\right)=c\left(x^{*}\right)+\varepsilon \frac{\partial c}{\partial x} z=0
$$

- Consider the Jacobian of the constraints $A=\frac{\partial c}{\partial x}$:

$$
A=\left[\begin{array}{cccc}
\frac{\partial c_{1}}{\partial x_{1}} & \frac{\partial c_{1}}{\partial x_{2}} & \cdots & \frac{\partial c_{1}}{\partial x_{N}} \\
\frac{\partial c_{2}}{\partial x_{1}} & \frac{\partial c_{2}}{\partial x_{2}} & \cdots & \frac{\partial c_{2}}{\partial x_{N}} \\
\vdots & & & \\
\frac{\partial c_{M}}{\partial x_{1}} & \frac{\partial c_{M}}{\partial x_{2}} & \cdots & \frac{\partial c_{M}}{\partial x_{N}}
\end{array}\right]
$$

- Typically $N>M$, hence the matrix is singular and allows many solutions for feasible directions $A z=0$.

							$20 / 40$
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions 00000000000	Projected gradients 00	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Projected gradients method

- The feasible directions z are in the nullspace or kernel of A.
- We can compute a basis for the nullspace of A and project a search direction s onto the nullspace.
- This removes all components of s that would lead to a violation of the constraints and leaves us with a feasible direction z, tangent to the constraints.
- For non-linear constraints this is only a first-order approximation, we need to add steps normal to the constraint direction to recover feasibility.
- These steps will be in the range of A for which $A z^{\prime} \neq 0$.

Notes
\qquad

Notes
\qquad
Optimality conditions and the Lagrangian
Projected gradient methods
Penalty function methods
Equality-constrained quadratic programming Sequential Quadratic Programming

Examples

Summary

Outline

Adding the constraint as a penalty

We could add the value of the constraint c with some multiplicative factor $1 / r$ to the function:

$$
P(x, r)=F(x)+\frac{1}{r} \sum_{i=1}^{M} c_{i}(x)^{2}
$$

with the penalty parameter $r>0$ and $r \rightarrow 0$ as we approach the solution.

- Choosing r to approach zero increases the value of P, so the optimiser chooses a new iterate x that reduces P, hence becomes more feasible.
- At x^{*}, the constraints are satisfied, so $c_{i}=0$ and the penalty term vanishes, the optimiser follows $\nabla F(x)$.
- This is called an exterior point method as the penalty becomes non-zero only outside the feasible region, at infeasible points.

23 / 40

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP	SQP	Summary	Exercises
000	000000000000	000	$00 \bullet 00000$	000	0000	000	0

Penalty functions: exterior point methods

- Adding a positive multiple of the constraint is an exterior penalty function method:
- We start from any point, feasible or not, and iterate toward feasibility by increasing the penalty for constraint violation.
- The iteration may stop before a feasible point is reached.

Example of penalised objective functions

Example: minimise drag c_{D} subject to constant lift c_{L} at $c_{L, \text { target }}$. Penalised cost function P :

$$
P=c_{D}+\frac{1}{r}\left(c_{L}-c_{L, \text { target }}\right)^{2}
$$

Inequality constrained: minimise weight W of a structure, subject to keeping stress σ below maximal stress $\sigma_{\text {max }}$:

$$
P=W+\frac{1}{r}\left(\max \left(0,|\sigma|-\sigma_{\max }\right)\right)^{k}
$$

where k is some positive, even, constant, the larger k, the more rapidly the penalty increases when the constraint is violated

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP	SQP	Summary	Exercises
000	000000000000	000	00000000	000	0000	000	0

Summary of Exterior point methods

Advantages:

- This formulation does not compute Lagrange multipliers.
- We only deal with an unconstrained minimisation of a modified function.

Disadvantages:

- We need to start with large values of r, the constraint $c_{i}=0$ will not be closely satisfied.
- for small r the Jacobian and Hessian of P can become very ill conditioned, resulting in erratic convergence.
- The c_{i} need to be near zero when using small values of r.
- Choice of r is not simple, poor choice can lead to lack of convergence.

							26 / 40
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 0000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises o

Barrier methods: for inequality constraints

- Start from a feasible point: $c_{i} \geq 0$
- Add a penalty function that penalises when approaching the feasibility boundary, i.e. start to violate the constraint:

$$
\begin{aligned}
& B(x)=f(x)+r \sum \frac{1}{c_{i}(x)} \\
& B(x)=f(x)-r \sum \log \left(c_{i}(x)\right)
\end{aligned}
$$

- Sharpen the penalty function $r \rightarrow 0$, making it "steeper", to let the solution approach the feasibility boundary as we converge.
- The current iterate is always feasible! This is called an interior point method.

Advantages

- This formulation does not compute Lagrange multipliers.
- We only deal with an unconstrained minimisation of a modified function.
- Iterates always remain feasible

Disadvantages:

- Needs an algorithm for adaptive control of barrier term
- If barrier function is not 'sharp', optimisation may stop far from the constraint boundary.

							28 / 40
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 0000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Augmented Lagrangian

Consider the alternative penalty formulation:

$$
\begin{aligned}
M(x, v, r) & =F(x)+\frac{1}{r} \sum_{i=1}^{M}\left(c_{i}(x)-\frac{r}{2} v_{i}\right)^{2} \\
& =F(x)+\frac{1}{r} \sum_{i=1}^{M} c_{i}(x)^{2}-\sum_{i=1}^{M} v_{i} c_{i}(x)+\frac{r}{4} \sum_{i=1}^{M} v_{i}^{2}
\end{aligned}
$$

- The function M is called the Augmented Lagrangian.
- If v approaches the Lagrange multipliers λ, we recover the first-order constrained optimality conditions.
- As we explicitly consider feasibility through the Lagrangian, we need only make r "sufficiently small", but not near zero, which results in better conditioning.

							29 / 40
$\begin{aligned} & \text { Examples } \\ & 000 \end{aligned}$	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & \bullet \circ \circ \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Summary

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\left(\begin{array}{cc}
G & -A^{T} \\
-A & 0
\end{array}\right)\binom{x^{*}}{\lambda^{*}}=\binom{-h}{b}
$$

Equality-constrained quadratic programming

$$
\left(\begin{array}{cc}
G & -A^{T} \tag{5}\\
-A & 0
\end{array}\right)\binom{x^{*}}{\lambda^{*}}=\binom{-h}{b}
$$

Eq. (5) is called an equality-constrained quadratic programming problem, EQP.

- The system matrix has zeros in the lower right diagonal block, hence the system matrix is not positive-definite.
- This means that standard iterative methods to solve this system will fail.
- A number of alternative methods to find solutions for Eq. (5) have been devised.
- But the equations in this formulation remain very difficult to be solved. This is an ongoing field of research.

							32 / 40
Examples 000	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & \bullet \circ \circ \circ \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & 000 \end{aligned}$	Exercises -

Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Principle of Sequential Quadratic Programming I

Sequential quadratic programming (SQP) is widely accepted as the most powerful method to solve constrained optimisation problems. Different variants are used.

- Express an improvement in the first-order optimality condition moving from x to x^{*} by $\delta x=x^{*}-x$:

$$
\begin{aligned}
& \frac{\partial F}{\partial x}(x+\delta x)-\sum_{i=1}^{M} \lambda^{*} \frac{\partial c_{i}(x+\delta x)}{\partial x}=0 \\
& c_{i}(x+\delta x)=0 \quad \text { for } \quad i=1, \cdots, M
\end{aligned}
$$

- Using Taylor expansion with $g=\frac{\partial F}{\partial x}, G=\frac{\partial^{2} f}{\partial x^{2}}, \nabla=\frac{\partial}{\partial x}$, we find:

$$
\begin{aligned}
& g(x)+G(x) \delta x-\sum_{i=1}^{M} \lambda^{*}\left[\nabla c_{i}(x)+\nabla^{2} c_{i}(x) \delta x\right]=0 \\
& c_{i}(x+\delta x)=0 \quad \text { for } \quad i=1, \cdots, M
\end{aligned}
$$

Principle of Sequential Quadratic Programming II

- Defining

$$
\hat{G}=G(x)-\lambda^{*} \nabla^{2} c_{i}(x)
$$

- we find the conditions for the step δx to be:

$$
\begin{aligned}
\hat{G} \delta x-A^{T} \lambda^{*} & =-g \\
-A \delta x & =c
\end{aligned}
$$

- This is equivalent to solving the following EQP for δx :

$$
\begin{aligned}
& \min _{x} \hat{F}(x)=\frac{1}{2}\left(\delta x^{T} \hat{G} \delta x\right)+g^{T} \delta x \\
& \text { s.t. } \quad c+A \delta x=0
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SQP Algorithms

$$
\begin{align*}
& \min _{x} \hat{F}(x)=\frac{1}{2}\left(\delta x^{T} \hat{G} \delta x\right)+g^{T} \delta x \tag{6}\\
& \text { s.t. } \quad c+A \delta x=0 \tag{7}
\end{align*}
$$

- Although the constraint is considered linear in (7), the Hessian of the constraint is included in (6).
- We can either ensure improvement in feasibility by including conditions on c_{i} in the line search (Wilson-Han-Powell SQP)
- or include a penalty function in the Augmented Lagrangian to ensure feasibility.
- The penalty variant has better convergence properties.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Examples

Optimality conditions and the Lagrangian

Projected gradient methods

Penalty function methods

Equality-constrained quadratic programming

Sequential Quadratic Programming

Summary

							$37 / 40$
Examples 000	Optimality condtitions 00000000000	Projected gradients 000	Penalty functions 00000000	$\begin{aligned} & \text { EQP } \\ & 000 \end{aligned}$	$\begin{aligned} & \text { SQP } \\ & 0000 \end{aligned}$	$\begin{aligned} & \text { Summary } \\ & \bigcirc \bullet 0 \end{aligned}$	Exercises -

Summary of constrained optimisation

- Projected gradient methods are very effective where constraints are not too non-linear.
- Penalty and barrier methods are simplest to implement, need careful adjustment of penalty parameters to achieve optimality.
- The Augmented Lagrangian reduces the stiffness of the penalty problem by including approximations to the Lagrange multipliers.
- The SQP algorithm is the state of the art, considers a quadratic model for the function.
- SQP leads to stiff saddle-point problem, many variants exist which may be better/worse for a particular problem.

Organisation of the lectures

1. Univariate optimisation

- Bisection, Steepest Descent, Newton's method

2. Multivariate optimisation

- Steepest descent, Newton's method
- and line-search methods: Wolfe and Armijo conditions,
- Quasi-Newton methods,

3. Constrained Optimisation:

- Projected gradient methods,
- Penalty methods, exterior and interior point methods,
- SQP

4. Adjoint methods

- Reversing time, Automatic Differentiation
- Adjoint CFD codes

5. Gradient computation

- Manual derivation, Finite Differences
- Algorithmic and automatic differentiation, fwd and bkwd.

Consider the provided multivar_opt.m code for the Rosenbrock function f.
Consider the constraint $x \leq 0.5$.

1. Add an exterior type penalty $c=\max (0, x-0.5)$ to f in the form $f^{\prime}=f+\epsilon(c)^{2}$. Find a suitable value of ϵ.
2. Add a barrier type penalty $c=\min (0,0.5-x)$ to f in the form $f^{\prime}=f+\frac{\epsilon}{c}$. Find a suitable value of ϵ.
3. Use a starting value of $x=0.5, y=-2$, and modify the computed gradient to implement a Projected Gradient Method.

Assess the performance of the 3 methods.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

