Examples Optimality conditions Projected gradients Penalty functions EQP SQP Summary 000 00000000000 000 000000000 0	Exercises O	
	No	otes
Introduction to Gradient-Based Optimisation	_	
Part 4: Constrained optimisation	_	
Dr. JD. Müller	_	
School of Engineering and Materials Science, Queen Mary, University of London	_	
j.mueller@qmul.ac.uk	_	
UK Fluids Network SIG on Numerical Optimisation with Fluids Cambridge, 8-10 August 2018	_	
© Jens-Dominik Müller, 2011-18, updated 8/8/18	_	
Examples Optimality conditions Projected gradients Penalty functions EQP SQP Summary 000 0000000000 000 00000000 000	1 / 40 Exercises	
Organisation of the lectures		otes
1. Univariate optimisation		
Bisection, Steepest Descent, Newton's methodMultivariate optimisation	_	
 Steepest descent, Newton's method and line-search methods: Wolfe and Armijo conditions, Quasi-Newton methods, 	_	
3. Constrained Optimisation:Projected gradient methods,	_	
 Penalty methods, exterior and interior point methods, SQP 	_	
 4. Adjoint methods Reversing time, Automatic Differentiation 	_	
Adjoint CFD codes5. Gradient computation		
 Manual derivation, Finite Differences Algorithmic and automatic differentiation, fwd and bkwd. 	2 / 40	
Examples Optimality conditions Projected gradients Penalty functions EQP SQP Summary 000 00000000000 000 000000000 0	Exercises O	
Outline	No	otes
Examples	_	
Optimality conditions and the Lagrangian	_	
Projected gradient methods	_	
Penalty function methods	_	
Equality-constrained quadratic programming	_	
Sequential Quadratic Programming	_	
Summary		

Outline
Examples
Optimality conditions and the Lagrangian
Projected gradient methods
Penalty function methods
Equality-constrained quadratic programming
Sequential Quadratic Programming
Summary

4 / 40

Notes

Exercises

Examples of constrained optimisation

Penalty functions

EQP

SQP

Summary

A typical optimisation application in aerodynamics is to minimise the drag of a profile (aircraft wing, wind-turbine blade). Aerodynamic drag increases due to wetted area (skin friction), but also due to generated lift (induced drag due to tip vortices). Hence simply minimising drag would shrink the profile to a point with zero lift.

Constrained optimisation allows to prevent this:

Projected gradients

Optimality condtitions

Examples

 $\min c_D \quad \text{s.t.} \quad c_L = c_{L,Target}$

Now we can minimise the drag, but ensure that we do not reduce the lift.

							5 / 40	
xamples	Optimality condtitions	Projected gradient	ts Penalty functions	EQP 000	SQP 0000	Summary	Exercises O	
		Tank	example					Notes
_								
Pr	operties of a tan	ik:						
	Volume o	f a tank:	$V = x_1 x_2 x_3$				(1)	
	Surface:	×3	(2)					
Cc	onstrained optimi	isation:						
	Minim	ise S	subject to	<i>V</i> =	= V*		(3)	
							(-)	

Examples	Optimality conditions ••••••••	Projected gradients	Penalty functions	EQP 000	SQP 0000	Summary 000	Exercises O	
		Ou	tline					Notes
E	xamples							
0	ptimality condition	ons and the La	grangian					
Р	rojected gradient	methods						
Ρ	enalty function m	nethods						
E	quality-constraine	ed quadratic pr	rogramming					
S	equential Quadra	tic Programmi						
S	ummary							

 $\min f(x)$ s.t. $c_i(x) = 0$, i = 1, k

with k equality constraints and n controls x.

Consider a line-search as a constraint, i.e. find the minimum along that line:

- The magnitude of the gradient is not zero in the minimum along the constraint direction,
- But the projection of the gradient along the constraint direction is zero. The gradient is perpendicular to the constraint.
- The constraints restrict the optimum to reside within a sub-manifold of *f*.

First-order optimality conditions: the Lagrangian

If the constraints are satisfied, i.e. $c_i = 0$, then we can add multiples of the constraints to the function to be minimised:

$$L(x,\lambda) = f(x) + \sum_{k} \lambda_i c_i(x) = f(x) + \lambda^T c$$

This is called the Lagrangian of the optimisation problem.

Consider x which satisfies the constraints. We need the constraints also to be satisfied for a change in design variables $x + \delta x$.

$$L(x + \delta x, \lambda) = f(x + \delta x) + \sum_{k} \lambda_{i} c_{i}(x + \delta x)$$
$$= f(x) + \frac{\partial f}{\partial x} \delta x + \sum_{k} \lambda_{i} (c_{i}(x) + \frac{\partial c_{i}}{\partial x} \delta x) + O(\delta x^{2})$$

Examples Optimality conditions Projected gradients Penalty functions

First-order constrained optimality condition

The change in Lagrangian is

$$\delta L = L(x + \delta x, \lambda) - L(x, \lambda)$$

= $\frac{\partial f}{\partial x} \delta x + \sum_{k} \lambda_{i} \frac{\partial c_{i}}{\partial x} \delta x + O(x^{2})$
= $\frac{\partial f}{\partial x} \delta x + \lambda^{T} \frac{\partial c}{\partial x} \delta x + O(\delta x^{2})$

In the minimum no further reduction is possible,

$$\frac{\partial L(x^*)}{\partial x} = \frac{\partial f(x^*)}{\partial x} + \lambda^T \frac{\partial c(x^*)}{\partial x} = 0,$$

which corresponds to Eq. (4).

In the minimum the gradient of the function is perpendicular to the direction of the constraint, so for any *feasible* direction z:

$$z^T \nabla F(x^*) = 0$$

In the minimum the constraint is satisfied and the Hessian along the constraint direction is positive (positive-definite):

$$z^T \nabla^2 F(x^*) z > 0$$

for any feasible direction z.

Notes

13/40

SQP

Summary 000

EQF

Example of constrained minimisation, first-order optimality

min
$$F(x) = x_1^2 + 3x_1x_2$$
 s.t. $c_1(x) = x_1 + 5x_2 - 1 = 0$

Optimality conditions:

$$\frac{\partial F}{\partial x_1} - \lambda_1 \frac{\partial c_1}{\partial x_1} = 2x_1 + 3x_2 - \lambda_1 = 0$$

$$\frac{\partial F}{\partial x_2} - \lambda_1 \frac{\partial c_1}{\partial x_2} = 3x_1 - 5\lambda_1 = 0$$

$$c_1 = x_1 + 5x_2 - 1 = 0$$

Leading to the minimum with

$$x_1^* = -\frac{3}{4}, \quad x_2^* = \frac{7}{20}, \quad \lambda_1 = -\frac{9}{20}$$

(Source: Bartholomew-Biggs)

The λ_i are called the Lagrange multipliers. What is their meaning?

$$L(x,\lambda) = f(x) + \sum_{k} \lambda_{i} c_{i}(x) = f(x) + \lambda^{T} c$$
$$\frac{\partial L}{\partial c_{i}} = \lambda_{i}$$

- the Lagrange multiplier measures the sensitivity of the objective with respect to changes in the constraint.
- It is the rate of change of the objective when the constraint is violated.

 Examples
 Optimality conditions
 Projected gradients
 Penalty functions
 EQP
 SQP
 Summary
 Exercises

Example for the meaning of Lagrange multipliers

Tank example (Open-topped):

min $S(x_1, x_2, x_3)$ s.t. $x_1 x_2 x_3 = V^* = 20$

Solution:

$$x_1 = 1.71, x_2 = x_3 = 3.42, \quad S^* = 36.09, \quad \lambda = 1.17.$$

How does the minimal surface S^* change if we modify the target volume to, say, $V^* = 20.5$?

$$\delta S^* = \lambda \delta V^* = 1.17 * 0.5 = 0.585$$

(Source: Bartholomew-Biggs)

Notes

Notes

Examples	Optimality condtitions	Projected gradients ●○○	Penalty functions	EQP 000	SQP 0000	Summary	Exercises O	
		Ou	Notes					
E>	amples							
O	otimality condition	ons and the La	grangian					
Pr	ojected gradient	methods						
Pe	enalty function m	nethods						
Ec	uality-constraine	ed quadratic pr	rogramming					
Se	quential Quadra	tic Programmi						
Su	immary							

19 / 40

$$A = \begin{bmatrix} \frac{\partial x_1}{\partial x_1} & \frac{\partial x_2}{\partial x_2} & \frac{\partial x_N}{\partial x_2} \\ \frac{\partial c_2}{\partial x_1} & \frac{\partial c_2}{\partial x_2} & \cdots & \frac{\partial c_2}{\partial x_N} \\ \vdots \\ \frac{\partial c_M}{\partial x_1} & \frac{\partial c_M}{\partial x_2} & \cdots & \frac{\partial c_M}{\partial x_N} \end{bmatrix}$$

• Typically N > M, hence the matrix is singular and allows many solutions for feasible directions Az = 0.

- The feasible directions z are in the *nullspace* or *kernel* of A.
- We can compute a basis for the nullspace of A and project a search direction s onto the nullspace.
- This removes all components of *s* that would lead to a violation of the constraints and leaves us with a feasible direction *z*, tangent to the constraints.
- For non-linear constraints this is only a first-order approximation, we need to add steps normal to the constraint direction to recover feasibility.
- These steps will be in the *range* of A for which $Az' \neq 0$.

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP 000	SQP 0000	Summary	Exercises O
		Οι	itline				
Ex	amples						
Ор	timality condition	ons and the La	agrangian				
Pro	ojected gradient	methods					
Pe	nalty function m	nethods					
Eq	uality-constraine	ed quadratic p	rogramming				
Se	quential Quadra	tic Programm					
Su	mmary						

 Examples
 Optimality conditions
 Projected gradients
 Penalty functions
 EQP
 SQP
 Summary

 000
 0000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Adding the constraint as a penalty

We could add the value of the constraint c with some multiplicative factor 1/r to the function:

$$P(x, r) = F(x) + \frac{1}{r} \sum_{i=1}^{M} c_i(x)^2$$

with the *penalty parameter* r > 0 and $r \rightarrow 0$ as we approach the solution.

- Choosing r to approach zero increases the value of P, so the optimiser chooses a new iterate x that reduces P, hence becomes more feasible.
- At x^{*}, the constraints are satisfied, so c_i = 0 and the penalty term vanishes, the optimiser follows ∇F(x).
- This is called an *exterior point* method as the penalty becomes non-zero only outside the feasible region, at *infeasible* points.

- Adding a positive multiple of the constraint is an *exterior* penalty function method:
- We start from any point, feasible or not, and iterate toward feasibility by increasing the penalty for constraint violation.
- The iteration may stop before a feasible point is reached.

Notes

22 / 40

Notes

Exercises

Example of penalised objective functions

Penalty functions

SQP

Projected gradients

Example: minimise drag c_D subject to constant lift c_L at $c_{L,target}$. Penalised cost function P:

$$P = c_D + \frac{1}{r} \left(c_L - c_{L,target} \right)^2$$

Inequality constrained: minimise weight W of a structure, subject to keeping stress σ below maximal stress σ_{max} :

$$P = W + \frac{1}{r} \left(\max(0, |\sigma| - \sigma_{max}) \right)^k$$

where k is some positive, even, constant, the larger k, the more rapidly the penalty increases when the constraint is violated.

- This formulation does not compute Lagrange multipliers.
- We only deal with an unconstrained minimisation of a modified function.

Disadvantages:

Optimality condtitions

- We need to start with large values of *r*, the constraint *c_i* = 0 will not be closely satisfied.
- for small *r* the Jacobian and Hessian of *P* can become very *ill conditioned*, resulting in erratic convergence.
- The c_i need to be near zero when using small values of r.
- Choice of r is not simple, poor choice can lead to lack of convergence.

Barrier methods: for inequality constraints

- Start from a feasible point: $c_i \ge 0$.
- Add a penalty function that penalises when approaching the feasibility boundary, i.e. start to violate the constraint:

$$B(x) = f(x) + r \sum \frac{1}{c_i(x)}$$
$$B(x) = f(x) - r \sum \log(c_i(x)).$$

- Sharpen the penalty function r → 0, making it "steeper", to let the solution approach the feasibility boundary as we converge.
- The current iterate is always feasible! This is called an **interior point method.**

Notes

26 / 40

27 / 40

Exercises

Notes

Advantages:

- This formulation does not compute Lagrange multipliers.
- We only deal with an unconstrained minimisation of a modified function.
- Iterates always remain feasible

Disadvantages:

- Needs an algorithm for adaptive control of barrier term
- If barrier function is not 'sharp', optimisation may stop far from the constraint boundary.

Augmented Lagrangian

Consider the alternative penalty formulation:

$$M(x, v, r) = F(x) + \frac{1}{r} \sum_{i=1}^{M} \left(c_i(x) - \frac{r}{2} v_i \right)^2$$

= $F(x) + \frac{1}{r} \sum_{i=1}^{M} c_i(x)^2 - \sum_{i=1}^{M} v_i c_i(x) + \frac{r}{4} \sum_{i=1}^{M} v_i^2$

- The function *M* is called the *Augmented Lagrangian*.
- If *v* approaches the Lagrange multipliers *λ*, we recover the first-order constrained optimality conditions.
- As we explicitly consider feasibility through the Lagrangian, we need only make *r* "sufficiently small", but not near zero, which results in better conditioning.

Notes

Approximating the function with a quadratic

Similar to Newton methods, we can approximate the function F as a quadratic and the constraints as linear:

$$\min_{x} \frac{1}{2} x^{T} G x + h^{T} x + c \qquad \text{s.t.} \qquad A x + b = 0$$

The Hessian G, the Jacobian of the constraints A and the vectors h, b are considered constant.

First-order optimality is then

$$Ax^* + b = 0$$

$$Gx^* + h - A^T \lambda^* = 0.$$

Which is equivalent to:

Optimality condtitions

Exam

$$\begin{pmatrix} G & -A^T \\ -A & 0 \end{pmatrix} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = \begin{pmatrix} -h \\ b \end{pmatrix}$$

31 / 40 Exercises

Notes

Equality-constrained quadratic programming

Projected gradients

$$\begin{pmatrix} G & -A^{T} \\ -A & 0 \end{pmatrix} \begin{pmatrix} x^{*} \\ \lambda^{*} \end{pmatrix} = \begin{pmatrix} -h \\ b \end{pmatrix}$$
(5)

Penalty functions

EQP

SQP

Summary

Eq. (5) is called an *equality-constrained quadratic programming* problem, EQP.

- The system matrix has zeros in the lower right diagonal block, hence the system matrix is not positive-definite.
- This means that standard iterative methods to solve this system will fail.
- A number of alternative methods to find solutions for Eq. (5) have been devised.
- But the equations in this formulation remain very difficult to be solved. This is an ongoing field of research.

							32 / 40
Examı 000	Optimality conditions	Projected gradients	Penalty functions	EQP 000	SQP ●000	Summary	Exercises O
		Ou	tline				
	Examples						
	Optimality conditi	ons and the La	igrangian				
	Projected gradient	t methods					
	Penalty function r	nethods					
	Equality-constrain	ed quadratic p	rogramming				
	Sequential Quadra	atic Programm	ng				
	Summary						

Principle of Sequential Quadratic Programming I

Sequential quadratic programming (SQP) is widely accepted as the most powerful method to solve constrained optimisation problems. Different variants are used.

 Express an improvement in the first-order optimality condition moving from x to x* by δx = x*-x:

$$\frac{\partial F}{\partial x}(x+\delta x) - \sum_{i=1}^{M} \lambda^* \frac{\partial c_i(x+\delta x)}{\partial x} = 0$$

$$c_i(x+\delta x) = 0 \quad \text{for} \quad i = 1, \cdots, M$$

• Using Taylor expansion with $g = \frac{\partial F}{\partial x}$, $G = \frac{\partial^2 f}{\partial x^2}$, $\nabla = \frac{\partial}{\partial x}$, we find:

$$g(x) + G(x)\delta x - \sum_{i=1}^{M} \lambda^* \left[\nabla c_i(x) + \nabla^2 c_i(x)\delta x \right] = 0$$

$$c_i(x + \delta x) = 0 \quad \text{for} \quad i = 1, \cdots, M$$

s Optimality conditions Projected gradients Penalty functions EQP SQP Summary

Principle of Sequential Quadratic Programming II

• Defining

$$\hat{G} = G(x) - \lambda^* \nabla^2 c_i(x)$$

• we find the conditions for the step δx to be:

$$\hat{G}\delta x - A^T \lambda^* = -g$$
$$-A\delta x = c$$

• This is equivalent to solving the following EQP for δx :

$$\min_{x} \hat{F}(x) = \frac{1}{2} (\delta x^{T} \hat{G} \delta x) + g^{T} \delta x$$

s.t. $c + A \delta x = 0$

$$\min_{x} \hat{F}(x) = \frac{1}{2} (\delta x^{T} \hat{G} \delta x) + g^{T} \delta x$$
(6)
s.t. $c + A \delta x = 0$ (7)

- Although the constraint is considered linear in (7), the Hessian of the constraint is included in (6).
- We can either ensure improvement in feasibility by including conditions on *c_i* in the line search (Wilson-Han-Powell SQP)
- or include a penalty function in the Augmented Lagrangian to ensure feasibility.
- The penalty variant has better convergence properties.

Notes

Notes

Notes

34 / 40

Exercises

Examples	Optimality condtitions	Projected gradients	Penalty functions	EQP 000	SQP 0000	Summary •00	Exercises O	
		Ou	Notes					
Ex	amples							
Op	timality condition	ons and the La	grangian					
Pro	ojected gradient	methods						
Pe	nalty function m	nethods						
Eq	uality-constraine	ed quadratic p	rogramming					
Se	quential Quadra	tic Programmi						
Su	mmary							

39 / 40

- Reversing time, Automatic Differentiation
- Adjoint CFD codes
- 5. Gradient computation
 - Manual derivation, Finite Differences
 - Algorithmic and automatic differentiation, fwd and bkwd.

Examples	Optimality condtitions	Projected gradients		EQP 000	SQP 0000	Summary 000	Exercises •	
E	xercises on m	ulti-variate,	, constraine	ed	optin	nisatio	n	Notes

Consider the provided $multivar_opt.m$ code for the Rosenbrock function f.

Consider the constraint $x \leq 0.5$.

- 1. Add an exterior type penalty $c = \max(0, x 0.5)$ to f in the form $f' = f + \epsilon(c)^2$. Find a suitable value of ϵ .
- 2. Add a barrier type penalty $c = \min(0, 0.5 x)$ to f in the form $f' = f + \frac{\epsilon}{c}$. Find a suitable value of ϵ .
- 3. Use a starting value of x = 0.5, y = -2, and modify the computed gradient to implement a Projected Gradient Method.

Assess the performance of the 3 methods.

40 / 40

Notes