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Organisation of the lectures

1. Univariate optimisation
• Bisection, Steepest Descent, Newton’s method

2. Multivariate optimisation
• Steepest descent, Newton’s method
• and line-search methods: Wolfe and Armijo conditions,
• Quasi-Newton methods,

3. Constrained Optimisation:
• Projected gradient methods,
• Penalty methods, exterior and interior point methods,
• SQP

4. Adjoint methods
• Reversing time, Automatic Differentiation
• Adjoint CFD codes

5. Gradient computation
• Manual derivation, Finite Differences
• Algorithmic and automatic differentiation, fwd and bkwd.
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Examples of constrained optimisation

A typical optimisation application in aerodynamics is to minimise
the drag of a profile (aircraft wing, wind-turbine blade).
Aerodynamic drag increases due to wetted area (skin friction), but
also due to generated lift (induced drag due to tip vortices).
Hence simply minimising drag would shrink the profile to a point
with zero lift.
Constrained optimisation allows to prevent this:

min cD s.t. cL = cL,Target

Now we can minimise the drag, but ensure that we do not reduce
the lift.
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Tank example

Properties of a tank:

Volume of a tank: V = x1x2x3 (1)

Surface: S = 2x1x2 + 2x1x3 + x2x3 (2)

Constrained optimisation:

Minimise S subject to V = V ∗ (3)
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Optimality conditions

The system to optimise is

min
x

f (x) s.t. ci (x) = 0, i = 1, k

with k equality constraints and n controls x .

Consider a line-search as a constraint, i.e. find the minimum along
that line:

• The magnitude of the gradient is not zero in the minimum
along the constraint direction,

• But the projection of the gradient along the constraint
direction is zero. The gradient is perpendicular to the
constraint.

• The constraints restrict the optimum to reside within a
sub-manifold of f .
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A very simple example of constrained optimisation

f (x , y) = x + y ,

s.t. x2 + y2 = 1

(Source: Wikipedia)

9 / 40

Notes

Notes

Notes



Examples Optimality condtitions Projected gradients Penalty functions EQP SQP Summary Exercises

Saddlepoint example with line constraint

f (x , y) = x2y + x

s.t. x − 2y = −5
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Saddlepoint example with circle constraint

f (x , y) = x2y + x

s.t. x2 + y2 = 3
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Condition for a constrained minimum

• The gradient of the function is perpendicular to the direction
of the constraint.

• The gradient of the function and the gradient of the
constraint are parallel:

∂f

∂x
= λ

∂c

∂x
∂f

∂x
− λ

∂c

∂x
= 0 (4)

where λ is an “arbitrary” scalar.
Definition of feasibility:

• Any point x that satisfies the constraints is called a feasible
point

• If x is a feasible point, any direction z for which x + εz is also
feasible is called a feasible direction.
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First-order optimality conditions: the Lagrangian

If the constraints are satisfied, i.e. ci = 0, then we can add
multiples of the constraints to the function to be minimised:

L(x , λ) = f (x) +
∑
k

λici (x) = f (x) + λT c

This is called the Lagrangian of the optimisation problem.

Consider x which satisfies the constraints. We need the constraints
also to be satisfied for a change in design variables x + δx .

L(x + δx , λ) = f (x + δx) +
∑
k

λici (x + δx)

= f (x) +
∂f

∂x
δx +

∑
k

λi (ci (x) +
∂ci
∂x

δx) + O(δx2)
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First-order constrained optimality condition

The change in Lagrangian is

δL = L(x + δx , λ)− L(x , λ)

=
∂f

∂x
δx +

∑
k

λi
∂ci
∂x

δx + O(x2)

=
∂f

∂x
δx + λT

∂c

∂x
δx + O(δx2)

In the minimum no further reduction is possible,

∂L(x∗)

∂x
=
∂f (x∗)

∂x
+ λT

∂c(x∗)

∂x
= 0,

which corresponds to Eq. (4).
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Second-order constrained optimality condition

In the minimum the gradient of the function is perpendicular to
the direction of the constraint, so for any feasible direction z :

zT∇F (x∗) = 0

In the minimum the constraint is satisfied and the Hessian along
the constraint direction is positive (positive-definite):

zT∇2F (x∗)z > 0

for any feasible direction z .
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Example of constrained minimisation, first-order optimality

min
x

F (x) = x21 + 3x1x2 s.t. c1(x) = x1 + 5x2 − 1 = 0

Optimalitiy conditions:

∂F

∂x1
− λ1

∂c1
∂x1

= 2x1 + 3x2 − λ1 = 0

∂F

∂x2
− λ1

∂c1
∂x2

= 3x1 − 5λ1 = 0

c1 = x1 + 5x2 − 1 = 0

Leading to the minimum with

x∗1 = −3

4
, x∗2 =

7

20
, λ1 = − 9

20

(Source: Bartholomew-Biggs)
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Lagrange multipliers

The λi are called the Lagrange multipliers. What is their meaning?

L(x , λ) = f (x) +
∑
k

λici (x) = f (x) + λT c

∂L

∂ci
= λi

• the Lagrange multiplier measures the sensitivity of the
objective with respect to changes in the constraint.

• It is the rate of change of the objective when the constraint is
violated.
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Example for the meaning of Lagrange multipliers

Tank example (Open-topped):

minS(x1, x2, x3) s.t. x1x2x3 = V ∗ = 20

Solution:

x1 = 1.71, x2 = x3 = 3.42, S∗ = 36.09, λ = 1.17.

How does the minimal surface S∗ change if we modify the target
volume to, say, V ∗ = 20.5?

δS∗ = λδV ∗ = 1.17 ∗ 0.5 = 0.585

(Source: Bartholomew-Biggs)
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Jacobian of the constraints

• A feasible direction z does not violate the constraints:

c(x∗ + εz) = c(x∗) + ε
∂c

∂x
z = 0

• Consider the Jacobian of the constraints A = ∂c
∂x :

A =



∂c1
∂x1

∂c1
∂x2

· · · ∂c1
∂xN

∂c2
∂x1

∂c2
∂x2

· · · ∂c2
∂xN

...

∂cM
∂x1

∂cM
∂x2

· · · ∂cM
∂xN


• Typically N > M, hence the matrix is singular and allows

many solutions for feasible directions Az = 0.

20 / 40

Examples Optimality condtitions Projected gradients Penalty functions EQP SQP Summary Exercises

Projected gradients method

• The feasible directions z are in the nullspace or kernel of A.

• We can compute a basis for the nullspace of A and project a
search direction s onto the nullspace.

• This removes all components of s that would lead to a
violation of the constraints and leaves us with a feasible
direction z , tangent to the constraints.

• For non-linear constraints this is only a first-order
approximation, we need to add steps normal to the constraint
direction to recover feasibility.

• These steps will be in the range of A for which Az ′ 6= 0.
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Adding the constraint as a penalty
We could add the value of the constraint c with some
multiplicative factor 1/r to the function:

P(x , r) = F (x) +
1

r

M∑
i=1

ci (x)2

with the penalty parameter r > 0 and r → 0 as we approach the
solution.

• Choosing r to approach zero increases the value of P, so the
optimiser chooses a new iterate x that reduces P, hence
becomes more feasible.

• At x∗, the constraints are satisfied, so ci = 0 and the penalty
term vanishes, the optimiser follows ∇F (x).

• This is called an exterior point method as the penalty becomes
non-zero only outside the feasible region, at infeasible points.
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Penalty functions: exterior point methods

• Adding a positive multiple of the constraint is an exterior
penalty function method:

• We start from any point, feasible or not, and iterate toward
feasibility by increasing the penalty for constraint violation.

• The iteration may stop before a feasible point is reached.
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objective

functionpenalty

penalised objective
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Example of penalised objective functions

Example: minimise drag cD subject to constant lift cL at cL,target .
Penalised cost function P:

P = cD +
1

r
(cL − cL,target)

2

Inequality constrained: minimise weight W of a structure, subject
to keeping stress σ below maximal stress σmax :

P = W +
1

r
(max(0, |σ| − σmax))k

where k is some positive, even, constant, the larger k , the more
rapidly the penalty increases when the constraint is violated.
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Summary of Exterior point methods

Advantages:

• This formulation does not compute Lagrange multipliers.

• We only deal with an unconstrained minimisation of a
modified function.

Disadvantages:

• We need to start with large values of r , the constraint ci = 0
will not be closely satisfied.

• for small r the Jacobian and Hessian of P can become very ill
conditioned, resulting in erratic convergence.

• The ci need to be near zero when using small values of r .

• Choice of r is not simple, poor choice can lead to lack of
convergence.
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Barrier methods: for inequality constraints
• Start from a feasible point: ci ≥ 0.
• Add a penalty function that penalises when approaching the

feasibility boundary, i.e. start to violate the constraint:

B(x) = f (x) + r
∑ 1

ci (x)

B(x) = f (x)− r
∑

log(ci (x)).

��
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��
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��
��

��
��
��
��
��
��
��
��
��
��
��

objective

function

increasingly sharp

penalty function

• Sharpen the penalty function
r → 0, making it “steeper”, to
let the solution approach the
feasibility boundary as we
converge.

• The current iterate is always
feasible! This is called an
interior point method.
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Summary of Interior point methods

Advantages:

• This formulation does not compute Lagrange multipliers.

• We only deal with an unconstrained minimisation of a
modified function.

• Iterates always remain feasible

Disadvantages:

• Needs an algorithm for adaptive control of barrier term

• If barrier function is not ’sharp’, optimisation may stop far
from the constraint boundary.
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Augmented Lagrangian

Consider the alternative penalty formulation:

M(x , v , r) = F (x) +
1

r

M∑
i=1

(
ci (x)− r

2
vi

)2
= F (x) +

1

r

M∑
i=1

ci (x)2 −
M∑
i=1

vici (x) +
r

4

M∑
i=1

v2i

• The function M is called the Augmented Lagrangian.

• If v approaches the Lagrange multipliers λ, we recover the
first-order constrained optimality conditions.

• As we explicitly consider feasibility through the Lagrangian,
we need only make r “sufficiently small”, but not near zero,
which results in better conditioning.
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Approximating the function with a quadratic
Similar to Newton methods, we can approximate the function F as
a quadratic and the constraints as linear:

min
x

1

2
xTGx + hT x + c s.t. Ax + b = 0

The Hessian G , the Jacobian of the constraints A and the vectors
h, b are considered constant.
First-order optimality is then

Ax∗ + b = 0

Gx∗ + h − ATλ∗ = 0.

Which is equivalent to:(
G −AT

−A 0

)(
x∗

λ∗

)
=

(
−h
b

)
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Equality-constrained quadratic programming

(
G −AT

−A 0

)(
x∗

λ∗

)
=

(
−h
b

)
(5)

Eq. (5) is called an equality-constrained quadratic programming
problem, EQP.

• The system matrix has zeros in the lower right diagonal block,
hence the system matrix is not positive-definite.

• This means that standard iterative methods to solve this
system will fail.

• A number of alternative methods to find solutions for Eq. (5)
have been devised.

• But the equations in this formulation remain very difficult to
be solved. This is an ongoing field of research.
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Principle of Sequential Quadratic Programming I
Sequential quadratic programming (SQP) is widely accepted as the
most powerful method to solve constrained optimisation problems.
Different variants are used.
• Express an improvement in the first-order optimality condition

moving from x to x∗ by δx = x∗−x :

∂F

∂x
(x + δx)−

M∑
i=1

λ∗
∂ci (x + δx)

∂x
= 0

ci (x + δx) = 0 for i = 1, · · · ,M
• Using Taylor expansion with g = ∂F

∂x ,G = ∂2f
∂x2

,∇ = ∂·
∂x , we

find:

g(x) + G (x)δx −
M∑
i=1

λ∗
[
∇ci (x) +∇2ci (x)δx

]
= 0

ci (x + δx) = 0 for i = 1, · · · ,M
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Principle of Sequential Quadratic Programming II

• Defining
Ĝ = G (x)− λ∗∇2ci (x)

• we find the conditions for the step δx to be:

Ĝδx − ATλ∗ = −g
−Aδx = c

• This is equivalent to solving the following EQP for δx :

min
x

F̂ (x) =
1

2
(δxT Ĝδx) + gT δx

s.t. c + Aδx = 0
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SQP Algorithms

min
x

F̂ (x) =
1

2
(δxT Ĝδx) + gT δx (6)

s.t. c + Aδx = 0 (7)

• Although the constraint is considered linear in (7), the
Hessian of the constraint is included in (6).

• We can either ensure improvement in feasibility by including
conditions on ci in the line search (Wilson-Han-Powell SQP)

• or include a penalty function in the Augmented Lagrangian to
ensure feasibility.

• The penalty variant has better convergence properties.
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Summary of constrained optimisation

• Projected gradient methods are very effective where
constraints are not too non-linear.

• Penalty and barrier methods are simplest to implement, need
careful adjustment of penalty parameters to achieve
optimality.

• The Augmented Lagrangian reduces the stiffness of the
penalty problem by including approximations to the Lagrange
multipliers.

• The SQP algorithm is the state of the art, considers a
quadratic model for the function.

• SQP leads to stiff saddle-point problem, many variants exist
which may be better/worse for a particular problem.
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Organisation of the lectures

1. Univariate optimisation
• Bisection, Steepest Descent, Newton’s method

2. Multivariate optimisation
• Steepest descent, Newton’s method
• and line-search methods: Wolfe and Armijo conditions,
• Quasi-Newton methods,

3. Constrained Optimisation:
• Projected gradient methods,
• Penalty methods, exterior and interior point methods,
• SQP

4. Adjoint methods
• Reversing time, Automatic Differentiation
• Adjoint CFD codes

5. Gradient computation
• Manual derivation, Finite Differences
• Algorithmic and automatic differentiation, fwd and bkwd.
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Exercises on multi-variate, constrained optimisation

Consider the provided multivar opt.m code for the Rosenbrock
function f .
Consider the constraint x ≤ 0.5.

1. Add an exterior type penalty c = max(0, x − 0.5) to f in the
form f ′ = f + ε(c)2. Find a suitable value of ε.

2. Add a barrier type penalty c = min(0, 0.5− x) to f in the
form f ′ = f + ε

c . Find a suitable value of ε.

3. Use a starting value of x = 0.5, y = −2, and modify the
computed gradient to implement a Projected Gradient
Method.

Assess the performance of the 3 methods.
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