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Organisation of the lectures

1. Univariate optimisation
• Bisection, Steepest Descent, Newton’s method

2. Multivariate optimisation
• Steepest descent, Newton’s method
• and line-search methods: Wolfe and Armijo conditions,
• Quasi-Newton methods,

3. Constrained Optimisation:
• Projected gradient methods,
• Penalty methods, exterior and interior point methods,
• SQP

4. Adjoint methods
• Reversing time, Automatic Differentiation
• Adjoint CFD codes

5. Gradient computation
• Manual derivation, Finite Differences
• Algorithmic and automatic differentiation, fwd and bkwd.
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Rosenbrock function

f (x , y) = (1−x)2+100(y−x2)2

There is a global minimum at
[x , y ] = [1, 1] with f=0.

f (x) =f (x1, x2, . . . , xN)

=

N/2∑
i=1

[100(x22i−1 − x2i )
2

+ (x2i−1 − 1)2].

For N = 3 there is a single
minimum at [1, 1, 1], for
4 ≤ N ≤ 7 there are two, for
N > 7 there is no analytic
solution.

(Source: (Image) Wikipedia)
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Computing the derivative of n-variate Rosenbrock

f (x) =

N/2∑
i=1

[100(x22i−1 − x2i )
2 + (x2i−1 − 1)2].

• Option 1: derive the derivatives by hand and program,

• Option 2: Finite Differences

• Option 3: Algorithmic Differentiation
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Analytic derivative of n-variate Rosenbrock

f (x) =

N/2∑
i=1

[100(x22i−1 − x2i )
2 + (x2i−1 − 1)2]

=

N/2∑
i=1

[100(x42i−1 − 2x22i−1x2i + x22i ) + x22i−1 − 2x2i−1 + 1]

∂f (x)

∂x2i−1
= 100(4x32i−1 − 4x2i−1x2i ) + 2x2i−1 − 2

∂f (x)

∂x2i
= 100(−2x2i−1)2 + 2x2i )

• needs knowledge of the exact equations of the model
• can be very complex to compute
• needs manual programming
• difficult to verify 7 / 59
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Finite difference derivative

Approximate the derivative as a forward difference

∂f (x)

∂xk
=

f (x + εδk)− f (x)

ε
+ O(ε)

with ε a small perturbation size and δk a vector of the same length
as x with zeros every where, but one in position k .
Similarly with a central difference

∂f (x)

∂xk
=

f (x + εδk)− f (x − εδk)

2ε
+ O(ε2)

Can we let ε→ 0 to make the truncation error vanish?
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Errors of finite differences
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Finite differences for gradient computation

• Needs no knowledge of the equations or implementation, can
call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one
additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two
additional evaluations per design variable.

• If ε is too small, there is a large round-off error.
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Algorithmic Differentiation (AD)
• Also known as Automatic Differentiation.
• A computer program that computes a function f (x) can be

viewed as a sequence of simple operations such as addition,
multiplication, etc:

f (x) = fn(fn−1(· · · f2(f1(x))))

• We can straightforwardly compute the derivative of each of
these operations and concatenate the derivatives using the
chain rule.

∂f (x)

∂xi
=

∂fn
∂fn−1

· ∂fn−1

∂fn−2
· · · · · ∂f2

∂f1
· ∂f1(x)

∂xi

• While f1 can only be a function of the input variables x , fn will
typically also depend on intermediate results fn−1, fn−2, . . . .
• We can proceed to compute the derivative (automatically)

instruction by instruction.
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Simple example of AD

Using the chain rule, compute ∂f
∂x1

for

y =

[
y1
y2

]
=

[
π · cos(3x1 + 2x2 + x3) · π · sin(3x1 + 2x2 + x3)
π · sin(3x1 + 2x2 + x3) · x1

]

u = 3*x(1)+2*x(2)+x(3)

pi = 3.14

v = pi*cos(u)

w = pi*sin(u)

sum = v + u

y(1) = v * w

y(2) = w*x(1)

gx(1) = 1

gx(2) = gx(3) = 0

gu = 3*gx(1)+2*gx(2)+gx(3)

gv = -pi*sin(u)*gu

gw = pi*cos(u)*gu

gy(1) = gv*w + v*gw

gy(2) = gw*x(1) + gx(1)*w

The initial values in the chain rule need to be seeded, either set at
the beginning of the computation, or computed in a preceding
function call.

13 / 59

Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises

Outline

Examples

Introduction to Algorithmic Differentiation

Graph view of AD

Matrix-view of forward-mode AD

Reverse-mode AD

Application of AD

Automatic Differentiation tools

14 / 59

Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises

Algorithms as graphs

J

alpha

intermediate
values

Original program

Forward differentiation

• Forward: propagate influence of each alpha through program
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Graph view of the example algorithm

x(2)

u = 3*x(1) + 2*x(2) + x(3)

y(1) = v*w

w = pi*sin(u) v = pi*cos(u)

pi = 3.14

y(2) = w*x(1)

x(1) x(3)
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Add partial derivatives along each path

x(2)

u = 3*x(1) + 2*x(2) + x(3)

y(1) = v*w

w = pi*sin(u) v = pi*cos(u)

pi = 3.14

y(2) = w*x(1)

x(1) x(3)

du/dx(1) = 3 2 1
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Add partial derivatives along each path

x(2)

u = 3*x(1) + 2*x(2) + x(3)

y(1) = v*w

w = pi*sin(u) v = pi*cos(u)

pi = 3.14

y(2) = w*x(1)

x(1) x(3)

pi*cos(u) −pi*sin(u)

w x(1) v w

du/dx(1) = 3 2 1
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Forward-mode AD using the graph

• Looking at the graph leading to the computation of y(1) we
have two incoming paths for v and w.

• The partial derivatives along the paths are ∂y(1)
∂w = v ,

∂y(1)
∂v = w .

• The linearised change in y(1) is then

∆y(1) =
∂y(1)

∂v
∆v +

∂y(1)

∂w
∆w = w∆v + v∆w

• The corresponding code statement is
gy(1) = w*gv + v*gw
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Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 1: gx(1) = ! ext. assignment of gx(1)

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


1

=



1
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


0
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Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 2: gx(2) = ! ext. assignment of gx(2)

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


2

=



1
0 1
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


1
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Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 3: gx(3) = ! ext. assignment of gx(3)

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


3

=



1
0 1
0 0 1
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


2
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Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 4: gu = 3*gx(1)+2*gx(2)+gx(3)

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


4

=



1
0 1
0 0 1
3 2 1 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


3
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Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 5: gv = -gu*pi*sin(u)

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


5

=



1
0 1
0 0 1
0 0 0 1
0 0 0 −π sin(u)
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


4

25 / 59

Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises

Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 6: gw = gu*pi*cos(u)

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


6

=



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 π cos(u) 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


5
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Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 7: gy(1) = gv*w + v*gw

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


7

=



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 w v 0
0 0 0 0 0 0 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


6

27 / 59

Notes

Notes

Notes



Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises

Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further
intermediate and 2 dependent i.e. output variables, hence
each program statement can be seen as multiplying a 8x8
matrix with an 8x1 column vector.

Step 8: gy(2) = gw*x(1) + w*gx(1)

gx1
gx2
gx3
gu
gv
gw
gy1
gy2


7

=



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
w 0 0 0 0 x(1) 0 0





gx1
gx2
gx3
gu
gv
gw
gy1
gy2


6
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What is forward-mode AD computing?
• Forward-mode AD computes the Jacobian-vector product
zn = EnEn−1 · · ·E2E1z1 = E z1 = J z1
• Hiding the internal intermediate variables, we are left with

∇f · ẋ =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · ·
∂fM
∂x1

∂fM
∂x2

· · · ∂fM
∂xn




ẋ1

ẋ2
...

ẋn

 = ẏ

• AD computes a directional derivative.
• For n inputs to f (at program start), we need to invoke the

differentiated chain n times, once for each column of the
Jacobian with a different seed vector ẋ .
• We compute the derivatives of all output variables in one

Jacobian column at each invocation of f d.
29 / 59
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Forward AD in our example:

∇f · ẋ = ẏ[
∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

] ẋ1
ẋ2
ẋ3

 =

[
ẏ1
ẏ2

]

Using ẋ = [1, 0, 0]T , we find

 ∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3




1

0

0

 =

[
∂y1
∂x1
∂y2
∂x1

]

Seeding the inputs ẋi one at a time, we extract one column of the
Jacobian at a time.
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Summary of forward-mode AD
• The forward mode computes directional derivatives by

multiplying the Jacobian ∂y
∂x with a direction (or weighting)

vector ẋ :

ẏ =
∂y

∂x
ẋ .

• Forward mode follows the statements in the same order as in
the original primal function.
• For n independent (input) var., f d needs to be invoked n

times to compute one row for each input in the Jacobian.
• All rows of one columns of the Jacobian (different output

variables) are obtained with one invocation of f d.
• Typically in engineering applications we have many more input

variables (design variables) than output variables (cost
functions).
Hence the forward mode is expensive, as it scales linearly with
the number of design variables and is constant in the number
of cost functions. 31 / 59
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Forward mode with vector output function

• Viewed from the outside we compute the Jacobian-vector
product zn = EnEn−1 · · ·E2E1z1 = Ez1 = Jp

∇f · p =



∂f1
∂x1

∂f1
∂x1

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x1

· · · ∂f2
∂xn

...
...

∂fm
∂x1

∂fm
∂x1

· · · ∂fm
∂xn




p1

p2
...

pn


• If there are m components of the output function f , we obtain

all rows in one column at the same time, but still need to
invoke the differentiated routine n times with n different seed
vectors p.
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Algorithms as graphs

J

alpha

intermediate
values

Original program
Reverse

differentiation

Forward differentiation

• Forward: propagate influence of each alpha through program
• Reverse: trace back every influence on result. One pass is

enough to get all derivatives.
34 / 59
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Reverse-mode algorithmic differentiation

Forward-mode computes

ẏ =
∂y

∂x
ẋ .

What if we computed

ȳ
∂y

∂x
= x̄ .

Note that ȳ has to be a row vector with dimension 2 to be
multiplied with the 2× 3 matrix of our example.
This is the reverse-mode of AD.
Again, a directional derivative is computed, but this time a
vector-matrix product, or a transpose matrix-vector product.
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Matrix-view of reverse mode AD

ȳ
∂y

∂x
= x̄ .

ȳ∇f = [ȳ1, ȳ2, · · · , ȳn]



∂f1
∂x1

∂f1
∂x1

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x1

· · · ∂f2
∂xn

· · ·
∂fM
∂x1

∂fM
∂x1

· · · ∂fM
∂xn

 = [x̄1, x̄2 · · · x̄n]
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Reverse-mode AD in our example:

[ȳ1, ȳ2]

 ∂y1
∂x1

∂y1
∂x1

∂y1
∂xn

∂y2
∂x1

∂y2
∂x1

∂y2
∂xn

 = [x̄1, x̄2, x̄3]

Using ȳ = [1, 0], we find

[1, 0]

 ∂y1
∂x1

∂y1
∂x1

∂y1
∂x3

∂y2
∂x1

∂y2
∂x1

∂y2
∂x3

 =

[
∂y1
∂x1

,
∂y1
∂x1

,
∂y1
∂x3

]

Seeding the outputs ȳi one at a time, we extract one row of the
Jacobian at a time.
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Properties of reverse-mode AD

• As in the forward-mode, reverse-mode AD computes a
directional derivative.

• All complexity arguments transpose:

• Each invocation of f̄ provides one row the Jacobian:
sensitivity of one output variable w.r.t. all n input variables.

• For m outputs y1 · · · ym, f̄ needs to be invoked m times.

• Typically in engineering applications we have many more input
variables (design variables) than output variables (cost
functions).
Hence the reverse mode is cheap, as its cost is linear in the
number of cost functions, but is independent of the number of
design variables
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How to apply reverse-mode AD?
Forward-mode computes

ẏ =
∂y

∂x
ẋ = EnEn−1 · · ·E2E1ẋ = Eẋ .

Applying simple rules of transpose matrix multiplication:(
ȳ
∂y

∂x

)T

=
∂y

∂x

T

ȳT = ET ȳT = (EnEn−1 · · ·E2E1)T ȳT

= ET
1 ET

2 · · ·ET
n−1E

T
n ȳT

• We apply the same differentiation operations Ei as in the
forward mode
• But we accumulate the chain rule in reverse, starting with the

final operation En.
• We follow the logic of the primal in reverse hence the name

reverse-differentiation.
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“Transposing” a statement in reverse-mode

Primal statement: y(1) = v*w

forward-mode

gy(1) = gv*w + v*gw

[
gv
gw
gy1

]
7

=

[
1
0 1
w v 0

][
gv
gw
gy1

]
6

żn+1 = Enżn

reverse-mode

vb = vb + w*yb(1)
wb = wb + v*yb(1)[

vb
wb
yb1

]
6

=

[
1 0 w
0 1 v
0 0 0

][
vb
wb
yb1

]
7

z̄nEn = z̄n−1

(z̄nEn)T = ET
n z̄Tn = z̄Tn−1
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Reverse-mode AD using the graph

• We accumulate the change going through the graph in
backward order

• The path between v and y(1) carries the partial derivative w.

• Hence along that path we accumulate
vb = vb + w*y(1)

• Similarly for w:
wb = wb + v*y(1)

• But w also contributes to y(2) with derivative x(1), hence
wb = wb + x(1)*y(2)

• In our primal code y(2) is computed last, hence the
increment of x(1)*y(2) is the first, so we could omit
initialising wb=0 and write wb = x(1)*y(2)
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Reverse mode AD, graph and code

x(2)

u = 3*x(1) + 2*x(2) + x(3)

y(1) = v*w

w = pi*sin(u) v = pi*cos(u)

pi = 3.14

y(2) = w*x(1)

x(1) x(3)

pi*cos(u) −pi*sin(u)

w x(1) v w

du/dx(1) = 3 2 1

u = 3*x(1) + 2*x(2) + x(3)

pi = 3.14

v = pi*cos(u)

w = pi*sin(u)

xb(:) = 0.

yb(:) = 0., yb(1) = 1

wb = x(1)*yb(2)

xb(1) = xb(1) + w*yb(2)

vb = w*yb(1)

wb = wb + v*yb(1)

ub = pi*cos(u)*wb-

pi*sin(u)*vb

xb(1) = xb(1) + 3*ub

xb(2) = xb(2) + 2*ub

xb(3) = xb(3) + ub
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Example of reverse mode AD

y =

[
y1
y2

]
=

[
π · cos(3x1 + 2x2 + x3) · π · sin(3x1 + 2x2 + x3)
π · sin(3x1 + 2x2 + x3) · x1

]

gx(1) = 1

gx(2) = gx(3) = 0

gu = 3*gx(1)+2*gx(2)+gx(3)

u = 3*x(1)+2*x(2)+x(3)

pi = 3.14

gv = -gu*pi*sin(u)

v = pi*cos(u)

gw = gu*pi*cos(u)

w = pi*sin(u)

gy(1) = gv*w + v*gw

y(1) = v * w

gy(2) = gw*x(1) + gx(1)*w

y(2) = w*x(1)

yb(1) = 1., yb(2) = 0.

u = 3*x(1) + 2*x(2) + x(3)

pi = 3.14

v = pi*cos(u)

w = pi*sin(u)

xb(:) = 0.

wb = x(1)*yb(2)

xb(1) = xb(1) + w*yb(2)

vb = w*yb(1)

wb = wb + v*yb(1)

ub = pi*cos(u)*wb]-

pi*sin(u)*vb

xb(1) = xb(1) + 3*ub

xb(2) = xb(2) + 2*ub

xb(3) = xb(3) + ub
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Implementation the reverse-mode AD

• For each cost-function we need to seed with ȳi = 1.

• We obtain all the derivatives of yi w.r.t. all x in one
invocation.

• The logic is followed in reverse, hence we need to store or
recompute all the intermediate values needed to compute the
derivatives.
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Forward-mode AD at function level

So far we have seen AD applied at the level of the code statements,
we can also ’zoom out’ and consider AD at the level of functions.

! a,e variable, c constant

! inputs. Scalar J.

[a,f] =

pre proc ( a, c, e )

[a,h] =

solve ( a, f )

[J] =

obj ( a, c, h, e )

! seed

ga(:)=0,ge(:)=0,ga(1)=1

[a,ga,f,gf] =

gpre proc(a,ga,c,e,ge)

[a,ga,h,gh] =

gsolve(a,ga,f,gf)

[J,gJ] =

gobj(a,ga,c,h,gh,e,ge)
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Reverse mode AD at function level

In reverse mode the program traverses the graph from end to start:
inputs and outputs reverse roles for the perturbations ’b’.

! a,e variable, c constant

! inputs. Scalar J.

[a,f] =

pre proc ( a, c, e )

[a,h] =

solve ( a, f )

[J] =

obj ( a, c, h, e )

!seed

ab=0,hb=0,eb=0,Jb=1

! recompute e,f

[a,f] =

pre proc ( a, c, e )

[a,h] =

solve ( a, f )

[J,ab,hb,eb] =

objb(a,ab,c,h,hb,e,eb,Jb)

[a,ab,h,fb] =

solveb(a,ab,f,hb)

[a,ab,f,eb] =

pre procb(a,ab,c,e,eb,fb)
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Linear operators

! a,e,f variable inputs,

function [r] =

linFun ( a,e,f )

r = 3*a + 2*e + f

end function

ga,ge,gf = .... ! seed ,

function [r,gr] =

glinFun ( a,ga,e,ge,f,gf )

r = 3*a + 2*e + f

gr = 3*ga + 2*ge + gf

end function

Alternatively, as the function is
linear and gr does not depend
on the values of a,e,f, call the
original, primal, linFun twice:

ga,ge,gf = .... ! seed ,

[r] = linFun(a,e,f)

[gr] = linFun(ga,ge,gf)
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Symmetric operators

Recall that AD can be viewed as a matrix multiplication, the
reverse mode uses the transpose. If the matrix is symmetric,
self-adjoint, this produces the same operation:

! in array a(:), out r(:)

function [r] =

symFun ( a )

for i=1:size(a)

r(i) =

a(i-1)+a(i)+a(i+1)

end for

end function

function [r,ab] =

symFunb ( a,rb )

for i=1:size(a)

r(i) = a(i-1)+a(i)+a(i+1)

end for

ab(:) = 0 ! accum. from 0

for i=size(a),1,-1

ab(i-1) += rb(i)

ab(i) +=rb(i)

ab(i+1) += rb(i)

end for

end function
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Symmetric operators II
Alternatively, as the function is self-adjoint, call the original
(primal) symFun twice:

! in array a(:), out r(:)

function [r] =

symFun ( a )

for i=1:size(a)

r = a(i-1)+a(i)+a(i+1)

end for

end function

[r] = symFun(a)

[ab] = symFun(rb)

In this example symFun is linear and self-adjoint, hence we can
reuse the primal code. If non-linear and self-adjoint, we can reuse
the simpler forward-AD code:
[r,gr] = gsymfun (a,ga)

but call it as
[r,ab] = gsymfun (a,rb)

which reverses the gradient arguments and computes in reverse
mode.
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From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same
order, add a derivative computation statement before each
primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,
why not have this done by software.

• The reverse-mode records all partial derivatives in each
statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid), potentially
memory consuming process, why not have this done by
software.

There are two main options to apply automatic differentiation:

• Source-transformation

• Operator-overloading
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AD via source transformation

Procedure:

• Parse (i.e. interpret) the statements in the primal source code

• then add the necessary statements to produce modified source
code

• then compile the modified source code.

Source-transformation AD tools:

• Tapenade (INRIA): Fortran, C. Forward and reverse, most
popular tool.

• TAF, TAC (FastOpt, commercial): Fortran, C. Forward and
reverse, produces highly performing code.

• TAMC (FastOpt, free to use): Fortran

• AdiFor (Argonne, free to use): Fortran, forward-mode only
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Properties of source transformation AD

Advantages/Disadvantages:

• Modified source code can be analysed, to inform a rewrite of
the primal to improve performance

• Modified source code can be optimised by the compiler,

• differentiated source code modules can easily be assembled
with non- or hand-differentiated code to optimise memory and
runtime.

• Compile-time parsing can only take account of information
available at compile-time (i.e. information embedded in the
code structure), it is oblivious of run-time effect such as
values of pointers.

• The entire code needs differentiating, regardless whether or
not parts of the code will be used at run-time.
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AD via Operator-Overloading
Principle:

• Most modern languages allow operator-overloading, i.e. to
define special data-types and then define extensions of
standard operations such as * or + for these data-types.
• E.g. we could define a forward derivative-enhanced double in
C:

struct {

double val ;

double val_d ;

} double_d

• An overloaded multiplication in C++ then would be:

double_d operator *( double_d a, double_d b ) {

double_d prod ;

prod.val_d = a.val*b.val_d + a.val_d*b.val ;

prod.val = a.val * b.val ;

return ( prod ) ; }
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AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such as
double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited possibilites

to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form val.d.

Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.
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Operator-overloading AD tools

The majority of AD tools for languages other than Fortran use
operator-overloading (O-O):

• ADOL-C (Univ. Paderborn): C,C++. Open-source. The
most widely used and most mature tool for C,C++.

• codipack for C++. Claims to have a more efficient tape
implementation.

• fadBad, cppAD for C++

• tools also available for matlab, R

Main source of information on AD: http://www.autodiff.org
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Organisation of the lectures

1. Univariate optimisation
• Bisection, Steepest Descent, Newton’s method

2. Multivariate optimisation
• Steepest descent, Newton’s method
• and line-search methods: Wolfe and Armijo conditions,
• Quasi-Newton methods,

3. Constrained Optimisation:
• Projected gradient methods,
• Penalty methods, exterior and interior point methods,
• SQP

4. Adjoint methods
• Reversing time, Automatic Differentiation
• Adjoint CFD codes

5. Gradient computation
• Manual derivation, Finite Differences
• Algorithmic and automatic differentiation, fwd and bkwd.
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Exercises for AD

1. Perform forward-mode AD to obtain the first derivative of the
bi-variate Rosenbrock function coded in multivar opt.m.
Verify the gradients against finite-differences and analytic
derivatives.

2. Draw the graph for Rosenbock, perform reverse-mode AD.
Verify the gradients.

3. Use Tapenade’s online interface to produce derivative code for
Rosenbrock in fwd and rev modes. Verify the gradients.
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