Introduction to Gradient-Based Optimisation

Part 5: Computation of derivatives

> Dr. J.-D. Müller

School of Engineering and Materials Science,
Queen Mary, University of London
j.mueller@qmul.ac.uk

UK Fluids Network SIG on Numerical Optimisation with Fluids
Cambridge, 8-10 August 2018
(c) Jens-Dominik Müller, 2011-18, updated 8/8/18

							1/59
Examples 00000000	Introduction 00	Graph view 000000	Matrix view 0000000000000	Reverse-mode 000000000000	Application of AD 000000	AD Tools 00000000	Exercises -

Organisation of the lectures

1. Univariate optimisation

- Bisection, Steepest Descent, Newton's method

2. Multivariate optimisation

- Steepest descent, Newton's method
- and line-search methods: Wolfe and Armijo conditions,
- Quasi-Newton methods,

3. Constrained Optimisation:

- Projected gradient methods,
- Penalty methods, exterior and interior point methods,
- SQP

4. Adjoint methods

- Reversing time, Automatic Differentiation
- Adjoint CFD codes

5. Gradient computation

- Manual derivation, Finite Differences
- Algorithmic and automatic differentiation, fwd and bkwd.

Outline

Examples
Introduction to Algorithmic Differentiation
Graph view of AD
Matrix-view of forward-mode AD

Reverse-mode AD

Application of AD
Automatic Differentiation tools

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Examples

Introduction to Algorithmic Differentiation
Graph view of AD
Matrix-view of forward-mode AD
Reverse-mode AD
Application of AD
Automatic Differentiation tools

							4 / 59
Examples 0 •000000	Introduction 00	Graph view 000000	Matrix view 0000000000000	Reverse-mode 000000000000	Application of AD 000000	AD Tools 00000000	Exercises -

Rosenbrock function

$f(x, y)=(1-x)^{2}+100\left(y-x^{2}\right)^{2}$
There is a global minimum at
$[x, y]=[1,1]$ with $\mathrm{f}=0$.

$$
\begin{aligned}
f(\mathbf{x})= & f\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
= & \sum_{i=1}^{N / 2}\left[100\left(x_{2 i-1}^{2}-x_{2 i}\right)^{2}\right. \\
& \left.\quad+\left(x_{2 i-1}-1\right)^{2}\right] .
\end{aligned}
$$

For $N=3$ there is a single minimum at $[1,1,1]$, for $4 \leq N \leq 7$ there are two, for

(Source: (Image) Wikipedia) $N>7$ there is no analytic solution.

Computing the derivative of n -variate Rosenbrock

$$
f(\mathbf{x})=\sum_{i=1}^{N / 2}\left[100\left(x_{2 i-1}^{2}-x_{2 i}\right)^{2}+\left(x_{2 i-1}-1\right)^{2}\right]
$$

- Option 1: derive the derivatives by hand and program,
- Option 2: Finite Differences
- Option 3: Algorithmic Differentiation

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analytic derivative of n-variate Rosenbrock

$$
\begin{aligned}
f(\mathbf{x})= & \sum_{i=1}^{N / 2}\left[100\left(x_{2 i-1}^{2}-x_{2 i}\right)^{2}+\left(x_{2 i-1}-1\right)^{2}\right] \\
= & \sum_{i=1}^{N / 2}\left[100\left(x_{2 i-1}^{4}-2 x_{2 i-1}^{2} x_{2 i}+x_{2 i}^{2}\right)+x_{2 i-1}^{2}-2 x_{2 i-1}+1\right] \\
& \frac{\partial f(x)}{\partial x_{2 i-1}}=100\left(4 x_{2 i-1}^{3}-4 x_{2 i-1} x_{2 i}\right)+2 x_{2 i-1}-2 \\
& \left.\frac{\partial f(x)}{\partial x_{2 i}}=100\left(-2 x_{2 i-1}\right)^{2}+2 x_{2 i}\right)
\end{aligned}
$$

- needs knowledge of the exact equations of the model
- can be very complex to compute
- needs manual programming
- difficult to verify $\begin{array}{llllllll}\text { Examples } & \text { Introduction } & \text { Graph view } & \text { Matrix view } & \text { Reverse-mode } & \text { Application of AD } & \text { AD Tools } \\ 0000 \bullet 000 & 00 & 000000 & 0000000000000 & 000000000000 & 000000 & 00000000 & 0\end{array}$

Finite difference derivative

Approximate the derivative as a forward difference

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{f\left(x+\varepsilon \delta_{k}\right)-f(x)}{\varepsilon}+O(\varepsilon)
$$

with ε a small perturbation size and δ_{k} a vector of the same length as x with zeros every where, but one in position k.
Similarly with a central difference

$$
\frac{\partial f(x)}{\partial x_{k}}=\frac{f\left(x+\varepsilon \delta_{k}\right)-f\left(x-\varepsilon \delta_{k}\right)}{2 \varepsilon}+O\left(\varepsilon^{2}\right)
$$

Can we let $\varepsilon \rightarrow 0$ to make the truncation error vanish?

Forward difference error dependence on ε (CFD case)

Finite differences for gradient computation

- Needs no knowledge of the equations or implementation, can call $f(x)$ as black-box.
- Needs careful setting of the stepsize ε :
- If ε is too large, there is a large truncation error.
- T.E. is $\propto O(\varepsilon)$ for forward or backward differences, one additional evaluation per design variable.
- T.E. is $\propto O\left(\varepsilon^{2}\right)$ for the central difference, but costs two additional evaluations per design variable.
- If ε is too small, there is a large round-off error.

							10/59
Examples 0000000	Introduction 00	Graph view 000000	Matrix view 0000000000000	Reverse-mode 000000000000	Application of AD 000000	AD Tools 00000000	Exercises -

Algorithmic Differentiation (AD)

- Also known as Automatic Differentiation.
- A computer program that computes a function $f(x)$ can be viewed as a sequence of simple operations such as addition, multiplication, etc:

$$
f(x)=f_{n}\left(f_{n-1}\left(\cdots f_{2}\left(f_{1}(x)\right)\right)\right)
$$

- We can straightforwardly compute the derivative of each of these operations and concatenate the derivatives using the chain rule.

$$
\frac{\partial f(x)}{\partial x_{i}}=\frac{\partial f_{n}}{\partial f_{n-1}} \cdot \frac{\partial f_{n-1}}{\partial f_{n-2}} \cdots \cdots \cdot \frac{\partial f_{2}}{\partial f_{1}} \cdot \frac{\partial f_{1}(x)}{\partial x_{i}}
$$

- While f_{1} can only be a function of the input variables x, f_{n} will typically also depend on intermediate results f_{n-1}, f_{n-2}, \ldots.
- We can proceed to compute the derivative (automatically) instruction by instruction.

Outline

Examples
Introduction to Algorithmic Differentiation
Graph view of AD

Matrix-view of forward-mode AD

Reverse-mode AD

Application of AD
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Automatic Differentiation tools

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple example of AD

Using the chain rule, compute $\frac{\partial f}{\partial x_{1}}$ for

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
\pi \cdot \cos \left(3 x_{1}+2 x_{2}+x_{3}\right) \cdot \pi \cdot \sin \left(3 x_{1}+2 x_{2}+x_{3}\right) \\
\pi \cdot \sin \left(3 x_{1}+2 x_{2}+x_{3}\right) \cdot x_{1}
\end{array}\right]
$$

$\mathrm{u}=3 * \mathrm{x}(1)+2 * \mathrm{x}(2)+\mathrm{x}(3)$	$\mathrm{gx}(1)=1$
$\mathrm{pi}=3.14$	$\mathrm{gx}(2)=\mathrm{gx}(3)=0$
$\mathrm{v}=\mathrm{pi} * \cos (\mathrm{u})$	$\mathrm{gu}=3 * \mathrm{gx}(1)+2 * \mathrm{gx}(2)+\mathrm{gx}(3)$
$\mathrm{w}=\mathrm{pi} * \sin (\mathrm{u})$	$\mathrm{gv}=-\mathrm{pi}(\sin (\mathrm{u}) * \mathrm{gu}$
$\mathrm{sum}=\mathrm{v}+\mathrm{u}$	$\mathrm{gw}=\mathrm{pi} * \cos (\mathrm{u}) * \mathrm{gu}$
$\mathrm{y}(1)=\mathrm{v} * \mathrm{w}$	$\mathrm{gy}(1)=\mathrm{gv} * \mathrm{w}+\mathrm{v} * \mathrm{gw}$
$\mathrm{y}(2)=\mathrm{w} * \mathrm{x}(1)$	$\mathrm{gy}(2)=\mathrm{gw} * \mathrm{x}(1)+\mathrm{gx}(1) * \mathrm{w}$

The initial values in the chain rule need to be seeded, either set at the beginning of the computation, or computed in a preceding function call.

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Outline

Examples

Introduction to Algorithmic Differentiation

Graph view of $A D$

Matrix-view of forward-mode AD

Reverse-mode AD

Application of $A D$

Automatic Differentiation tools

Algorithms as graphs

Forward differentiation

- Forward: propagate influence of each alpha through program

Graph view of the example algorithm

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools
0000000
```

``` 000 •00 Matrix view
Application of AD AD Tools
00000000 Exercis
```

Add partial derivatives along each path

Add partial derivatives along each path

Forward-mode AD using the graph

- Looking at the graph leading to the computation of $y(1)$ we have two incoming paths for v and w .
- The partial derivatives along the paths are $\frac{\partial y(1)}{\partial w}=v$, $\frac{\partial y(1)}{\partial v}=w$.
- The linearised change in $y(1)$ is then

$$
\Delta y(1)=\frac{\partial y(1)}{\partial v} \Delta v+\frac{\partial y(1)}{\partial w} \Delta w=w \Delta v+v \Delta w
$$

- The corresponding code statement is gy (1) = w*gv + v*gw

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

Examples

Introduction to Algorithmic Differentiation

Graph view of AD

Matrix-view of forward-mode AD

Reverse-mode AD

Application of AD

Automatic Differentiation tools

Matrix view of the simple example I

- The example function is 3-variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 1: $\quad g x(1)=!$ ext. assignment of $g x(1)$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{1}=\left[\begin{array}{llllllll}1 & & & & & & & \\ 0 & 0 & & & & & & \\ 0 & 0 & 0 & & & & & \\ 0 & 0 & 0 & 0 & & & & \\ 0 & 0 & 0 & 0 & 0 & & & \\ 0 & 0 & 0 & 0 & 0 & 0 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{0}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Matrix view of the simple example I

- The example function is 3 -variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 2: $\quad \operatorname{gx}(2)=!$ ext. assignment of $g x(2)$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{2}=\left[\begin{array}{llllllll}1 & & & & & & & \\ 0 & 1 & & & & & & \\ 0 & 0 & 0 & & & & & \\ 0 & 0 & 0 & 0 & & & & \\ 0 & 0 & 0 & 0 & 0 & & & \\ 0 & 0 & 0 & 0 & 0 & 0 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{1}$

Matrix view of the simple example I

- The example function is 3 -variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 3: $\quad \operatorname{gx}(3)=!$ ext. assignment of $\operatorname{gx}(3)$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{3}=\left[\begin{array}{llllllll}1 & & & & & & & \\ 0 & 1 & & & & & & \\ 0 & 0 & 1 & & & & & \\ 0 & 0 & 0 & 0 & & & & \\ 0 & 0 & 0 & 0 & 0 & & & \\ 0 & 0 & 0 & 0 & 0 & 0 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{2}$

Matrix view of the simple example I

- The example function is 3 -variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 4: $\quad \mathrm{gu}=3 * \operatorname{gx}(1)+2 * \operatorname{gx}(2)+\mathrm{gx}(3)$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{4}=\left[\begin{array}{llllllll}1 & & & & & & & \\ 0 & 1 & & & & & & \\ 0 & 0 & 1 & & & & & \\ 3 & 2 & 1 & 0 & & & & \\ 0 & 0 & 0 & 0 & 0 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{3}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Matrix view of the simple example I

- The example function is 3 -variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 5: \quad gv $=-\mathrm{gu} * \mathrm{pi} * \sin (\mathrm{u})$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{5}=\left[\begin{array}{cccccccc}1 & & & & & & & \\ 0 & 1 & & & & & & \\ 0 & 0 & 1 & & & & & \\ 0 & 0 & 0 & 1 & & & & \\ 0 & 0 & 0 & -\pi \sin (u) & & & \\ 0 & 0 & 0 & 0 & 0 & 0 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{4}$

Matrix view of the simple example I

- The example function is 3 -variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 6: \quad gw $=g u * p i * \cos (u)$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{6}=\left[\begin{array}{ccccccc}1 & & & & & & \\ 0 & 1 & & & & & \\ 0 & 0 & 1 & & & & \\ 0 & 0 & 0 & 1 & & & \\ 0 & 0 & 0 & 0 & 1 & & \\ 0 & 0 & 0 & \pi \cos (u) & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{5}$

Matrix view of the simple example I

- The example function is 3 -variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 7: $\quad \operatorname{gy}(1)=\mathrm{gv} * \mathrm{w}+\mathrm{v} * \mathrm{gw}$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{7}=\left[\begin{array}{llllllll}1 & & & & & & & \\ 0 & 1 & & & & & & \\ 0 & 0 & 1 & & & & & \\ 0 & 0 & 0 & 1 & & & & \\ 0 & 0 & 0 & 0 & 1 & & & \\ 0 & 0 & 0 & 0 & 0 & 1 & & \\ 0 & 0 & 0 & 0 & w & v & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{6}$
$\left.\mathrm{Ly}_{2}\right]_{5}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Matrix view of the simple example I

- The example function is 3 -variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8×8 matrix with an 8×1 column vector.

Step 8: $\quad \operatorname{gy}(2)=\operatorname{gw} * x(1)+\mathrm{w} * \mathrm{gx}(1)$
$\left[\begin{array}{l}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{7}=\left[\begin{array}{cccccccc}1 & & & & & & & \\ 0 & 1 & & & & & & \\ 0 & 0 & 1 & & & & & \\ 0 & 0 & 0 & 1 & & & & \\ 0 & 0 & 0 & 0 & 1 & & & \\ 0 & 0 & 0 & 0 & 0 & 1 & & \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\ w & 0 & 0 & 0 & 0 & x(1) & 0 & 0\end{array}\right]\left[\begin{array}{c}g x_{1} \\ g x_{2} \\ g x_{3} \\ g u \\ g v \\ g w \\ g y_{1} \\ g y_{2}\end{array}\right]_{6}$

What is forward-mode AD computing?

- Forward-mode AD computes the Jacobian-vector product
$z_{n}=E_{n} E_{n-1} \cdots E_{2} E_{1} z_{1}=E z_{1}=J z_{1}$
- Hiding the internal intermediate variables, we are left with

$$
\nabla f \cdot \dot{x}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\cdots & & & \\
\frac{\partial f_{M}}{\partial x_{1}} & \frac{\partial f_{M}}{\partial x_{2}} & \cdots & \frac{\partial f_{M}}{\partial x_{n}}
\end{array}\right]\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\vdots \\
\dot{x}_{n}
\end{array}\right]=\dot{y}
$$

- AD computes a directional derivative.
- For n inputs to f (at program start), we need to invoke the differentiated chain n times, once for each column of the Jacobian with a different seed vector \dot{x}.
- We compute the derivatives of all output variables in one Jacobian column at each invocation of f d.

Forward AD in our example:

$$
\begin{gathered}
\nabla f \cdot \dot{x}=\dot{y} \\
{\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
\dot{y}_{1} \\
\dot{y}_{2}
\end{array}\right]}
\end{gathered}
$$

Using $\dot{x}=[1,0,0]^{T}$, we find

$$
\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}} \\
\frac{\partial y_{2}}{\partial x_{1}}
\end{array}\right]
$$

Seeding the inputs \dot{x}_{i} one at a time, we extract one column of the Jacobian at a time.

Summary of forward-mode AD

- The forward mode computes directional derivatives by multiplying the Jacobian $\frac{\partial y}{\partial x}$ with a direction (or weighting) vector \dot{x} :

$$
\dot{y}=\frac{\partial y}{\partial x} \dot{x}
$$

- Forward mode follows the statements in the same order as in the original primal function.
- For n independent (input) var., f_d needs to be invoked n times to compute one row for each input in the Jacobian.
- All rows of one columns of the Jacobian (different output variables) are obtained with one invocation of f_d.
- Typically in engineering applications we have many more input variables (design variables) than output variables (cost functions).
Hence the forward mode is expensive, as it scales linearly with the number of design variables and is constant in the number of cost functions.

Forward mode with vector output function

- Viewed from the outside we compute the Jacobian-vector product $z_{n}=E_{n} E_{n-1} \cdots E_{2} E_{1} z_{1}=E z_{1}=J p$

$$
\nabla f \cdot p=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n}
\end{array}\right]
$$

- If there are m components of the output function f, we obtain all rows in one column at the same time, but still need to invoke the differentiated routine n times with n different seed vectors p.

Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algorithms as graphs

Reverse
differentiation

- Forward: propagate influence of each alpha through program
- Reverse: trace back every influence on result. One pass is enough to get all derivatives.

						$3 / 59$	
Examples	Introduction	Graph view	Matrix view	Reverse-mode	Application of AD	AD Tools	Exercises
000000000	00	000000	0000000000000	$00 \bullet 000000000$	000000	00000000	0

Reverse-mode algorithmic differentiation

Forward-mode computes

$$
\dot{y}=\frac{\partial y}{\partial x} \dot{x} .
$$

What if we computed

$$
\bar{y} \frac{\partial y}{\partial x}=\bar{x} .
$$

Note that \bar{y} has to be a row vector with dimension 2 to be multiplied with the 2×3 matrix of our example.
This is the reverse-mode of AD.
Again, a directional derivative is computed, but this time a vector-matrix product, or a transpose matrix-vector product.

$$
\begin{gathered}
\bar{y} \frac{\partial y}{\partial x}=\bar{x} \\
\bar{y} \nabla f=\left[\bar{y}_{1}, \bar{y}_{2}, \cdots, \bar{y}_{n}\right]\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\cdots & & & \\
\frac{\partial f_{M}}{\partial x_{1}} & \frac{\partial f_{M}}{\partial x_{1}} & \cdots & \frac{\partial f_{M}}{\partial x_{n}}
\end{array}\right]=\left[\bar{x}_{1}, \bar{x}_{2} \cdots \bar{x}_{n}\right]
\end{gathered}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reverse-mode AD in our example:

$$
\left[\bar{y}_{1}, \bar{y}_{2}\right]\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{n}}
\end{array}\right]=\left[\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right]
$$

Using $\bar{y}=[1,0]$, we find

$$
[1,0]\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{3}}
\end{array}\right]=\left[\frac{\partial y_{1}}{\partial x_{1}}, \frac{\partial y_{1}}{\partial x_{1}}, \frac{\partial y_{1}}{\partial x_{3}}\right]
$$

Seeding the outputs \bar{y}_{i} one at a time, we extract one row of the Jacobian at a time.

Properties of reverse-mode AD

- As in the forward-mode, reverse-mode AD computes a directional derivative.
- All complexity arguments transpose:
- Each invocation of \bar{f} provides one row the Jacobian: sensitivity of one output variable w.r.t. all n input variables.
- For m outputs $y_{1} \cdots y_{m}, \bar{f}$ needs to be invoked m times.
- Typically in engineering applications we have many more input variables (design variables) than output variables (cost functions).
Hence the reverse mode is cheap, as its cost is linear in the number of cost functions, but is independent of the number of design variables

How to apply reverse-mode AD?
Forward-mode computes

$$
\dot{y}=\frac{\partial y}{\partial x} \dot{x}=E_{n} E_{n-1} \cdots E_{2} E_{1} \dot{x}=E \dot{x}
$$

Applying simple rules of transpose matrix multiplication:

$$
\begin{aligned}
\left(\bar{y} \frac{\partial y}{\partial x}\right)^{T} & =\frac{\partial y}{\partial x} \bar{y}^{T}=E^{T} \bar{y}^{T}=\left(E_{n} E_{n-1} \cdots E_{2} E_{1}\right)^{T} \bar{y}^{T} \\
& =E_{1}^{T} E_{2}^{T} \cdots E_{n-1}^{T} E_{n}^{T} \bar{y}^{T}
\end{aligned}
$$

- We apply the same differentiation operations E_{i} as in the forward mode
- But we accumulate the chain rule in reverse, starting with the final operation E_{n}.
- We follow the logic of the primal in reverse hence the name reverse-differentiation.
"Transposing" a statement in reverse-mode
Primal statement: $\quad \mathrm{y}(1)=\mathrm{v} * \mathrm{w}$
forward-mode reverse-mode

$$
\begin{aligned}
& \mathrm{gy}(1)=\mathrm{g} \mathrm{v}^{*} \mathrm{w}+\mathrm{v}^{*} \mathrm{gw} \\
& \mathrm{vb}=\mathrm{vb}+\mathrm{w}^{*} \mathrm{yb}(1) \\
& w b=w b+v^{*} y b(1) \\
& {\left[\begin{array}{l}
g v \\
g w \\
g y_{1}
\end{array}\right]_{7}=\left[\begin{array}{lll}
1 & & \\
0 & 1 & \\
w & v & 0
\end{array}\right]\left[\begin{array}{l}
g v \\
g w \\
g y_{1}
\end{array}\right]_{6}\left[\begin{array}{l}
v b \\
w b \\
y b_{1}
\end{array}\right]_{6}=\left[\begin{array}{lll}
1 & 0 & w \\
0 & 1 & v \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v b \\
w b \\
y b_{1}
\end{array}\right]_{7}} \\
& \dot{z}_{n+1}=E_{n} \dot{z}_{n} \\
& \bar{z}_{n} E_{n}=\bar{z}_{n-1} \\
& \left(\bar{z}_{n} E_{n}\right)^{T}=E_{n}^{T} \bar{z}_{n}^{T}=\bar{z}_{n-1}^{T}
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

40 / 59
Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises 00000000 ○

Reverse-mode AD using the graph

- We accumulate the change going through the graph in backward order
- The path between v and $y(1)$ carries the partial derivative w.
- Hence along that path we accumulate $\mathrm{vb}=\mathrm{vb}+\mathrm{w} * \mathrm{y}(1)$
- Similarly for w: $\mathrm{wb}=\mathrm{wb}+\mathrm{v} * \mathrm{y}(1)$
- But w also contributes to y (2) with derivative $x(1)$, hence $\mathrm{wb}=\mathrm{wb}+\mathrm{x}(1) * \mathrm{y}(2)$
- In our primal code $y(2)$ is computed last, hence the increment of $\mathrm{x}(1) * y(2)$ is the first, so we could omit initialising $\mathrm{wb}=0$ and write $\mathrm{wb}=\mathrm{x}(1) * \mathrm{y}(2)$

Reverse mode AD, graph and code

$$
\begin{aligned}
& \mathrm{u}=3 * \mathrm{x}(1)+2 * \mathrm{x}(2)+\mathrm{x}(3) \\
& \mathrm{pi}=3.14 \\
& \mathrm{v}=\mathrm{pi} * \cos (\mathrm{u}) \\
& \mathrm{w}=\mathrm{pi} * \sin (\mathrm{u}) \\
& \mathrm{xb}(:)=0 . \\
& \mathrm{yb}(:)=0 ., \mathrm{yb}(1)=1 \\
& \mathrm{wb}=\mathrm{x}(1) * \mathrm{yb}(2) \\
& \mathrm{xb}(1)=\mathrm{xb}(1)+\mathrm{w} * \mathrm{yb}(2) \\
& \mathrm{vb}=\mathrm{w} * \mathrm{yb}(1) \\
& \mathrm{wb}=\mathrm{wb}+\mathrm{v} * \mathrm{yb}(1) \\
& \mathrm{ub}=\mathrm{pi} * \cos (\mathrm{u}) * \mathrm{wb}- \\
& \mathrm{pi} * \sin (\mathrm{u}) * \mathrm{vb}
\end{aligned} \mathrm{xb(1)=xb(1)+3*ub} \begin{aligned}
& \mathrm{xb}(2)=\mathrm{xb}(2)+2 * \mathrm{ub} \\
& \mathrm{xb}(3)=\mathrm{xb}(3)+\mathrm{ub}
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Implementation the reverse-mode AD

- For each cost-function we need to seed with $\bar{y}_{i}=1$.
- We obtain all the derivatives of y_{i} w.r.t. all x in one invocation.
- The logic is followed in reverse, hence we need to store or recompute all the intermediate values needed to compute the derivatives.

44 / 59

Outline

Examples

Introduction to Algorithmic Differentiation

Graph view of $A D$

Matrix-view of forward-mode AD

Reverse-mode AD

Application of AD
Automatic Differentiation tools

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

So far we have seen AD applied at the level of the code statements, we can also 'zoom out' and consider AD at the level of functions.

```
! a,e variable, c constant ! seed
! inputs. Scalar J.
[a,f] =
    pre_proc ( a, c, e )
[a,h] =
    solve (a, f )
[J] =
    obj ( a, c, h, e )
```

```
ga(:)=0,ge(:)=0,ga(1)=1
```

ga(:)=0,ge(:)=0,ga(1)=1
[a,ga,f,gf] =
[a,ga,f,gf] =
gpre_proc(a,ga,c,e,ge)
gpre_proc(a,ga,c,e,ge)
[a,ga,h,gh] =
[a,ga,h,gh] =
gsolve(a,ga,f,gf)
gsolve(a,ga,f,gf)
[J,gJ] =
[J,gJ] =
gobj(a,ga, c,h,gh,e,ge)

```
    gobj(a,ga, c,h,gh,e,ge)
```

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reverse mode AD at function level

In reverse mode the program traverses the graph from end to start: inputs and outputs reverse roles for the perturbations ' b '.

```
```

! seed

```
```

! seed
ab=0,hb=0, eb=0, Jb=1
ab=0,hb=0, eb=0, Jb=1
! recompute e,f
! recompute e,f
[a,f] =
[a,f] =
pre_proc (a, c, e)
pre_proc (a, c, e)
[a,h] =
[a,h] =
solve (a, f)
solve (a, f)
[J,ab,hb,eb] =

```
[J,ab,hb,eb] =
```

```
    objb(a, ab, c,h,hb,e, eb, Jb)
```

 objb(a, ab, c,h,hb,e, eb, Jb)
 [a,ab,h,fb] =
[a,ab,h,fb] =
solveb(a,ab,f,hb)
solveb(a,ab,f,hb)
[a,ab,f,eb] =
[a,ab,f,eb] =
pre_procb(a,ab,c,e,eb,fb)

```
    pre_procb(a,ab,c,e,eb,fb)
```

 ! a,e variable, c constant
 ! inputs. Scalar J.
[a,f] =
pre_proc (a, c, e)
[a,h] =
solve (a, f)
[J] =
obj (a, c, h, e)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

47 / 59

							47 / 59
Examples 00000000	Introduction -0	Graph view 000000	Matrix view 0000000000000	Reverse-mode 000000000000	Application of AD 00000	AD Tools 00000000	Exercises -

Linear operators

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[gr] $=\operatorname{linFun(ga,ge,gf)~}$

Symmetric operators

Recall that AD can be viewed as a matrix multiplication, the reverse mode uses the transpose. If the matrix is symmetric, self-adjoint, this produces the same operation:

```
! in array a(:), out r(:)
function [r] =
    symFun (a )
        for i=1:size(a)
            r(i) =
a(i-1)+a(i)+a(i+1)
    end for
end function
```

```
function [r,ab] =
    symFunb (a,rb )
    for i=1:size(a)
        r(i) = a(i-1)+a(i)+a(i+1)
    end for
    ab(:) = 0 ! accum. from 0
    for i=size(a),1,-1
        ab(i-1) += rb(i)
        ab(i) +=rb(i)
        ab(i+1) += rb(i)
    end for
end function
```

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

49 / 59
Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises $\begin{array}{llllll}\text { Examples } \\ 00000000 & 00 & \text { Introduction } & \text { Graph view } \\ 000000 & \text { Matrix view } & \text { Reverse-mode } & \text { Application of AD AD Tools Ex } \\ 00000000000 & 00000000000 & 00000 & 00000000\end{array}$

Symmetric operators II

Alternatively, as the function is self-adjoint, call the original (primal) symFun twice:
! in array a(:), out r(:)
function [r] = symFun (a) for i=1:size(a)
[r] = symFun(a)
$r=a(i-1)+a(i)+a(i+1)$
[ab] = $\operatorname{symFun}(r b)$ end for
end function
In this example symFun is linear and self-adjoint, hence we can reuse the primal code. If non-linear and self-adjoint, we can reuse the simpler forward-AD code:
[r, gr] = gsymfun (a,ga)
but call it as
[r, ab] = gsymfun (a, rb)
which reverses the gradient arguments and computes in reverse mode.

Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Automatic Differentiation tools

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

From Algorithmic to Automatic Differentiation

- Forward-mode steps through the statements in the same order, add a derivative computation statement before each primal statement.
- This is a straightforward (i.e. rigorous and stupid) process, why not have this done by software.
- The reverse-mode records all partial derivatives in each statement, then accumulates the derivatives in reverse.
- This is a straightforward (i.e. rigorous and stupid), potentially memory consuming process, why not have this done by software.

There are two main options to apply automatic differentiation:

- Source-transformation
- Operator-overloading

$A D$ via source transformation

Procedure:

- Parse (i.e. interpret) the statements in the primal source code
- then add the necessary statements to produce modified source code
- then compile the modified source code.

Source-transformation AD tools:

- Tapenade (INRIA): Fortran, C. Forward and reverse, most popular tool.
- TAF, TAC (FastOpt, commercial): Fortran, C. Forward and reverse, produces highly performing code.
- TAMC (FastOpt, free to use): Fortran
- AdiFor (Argonne, free to use): Fortran, forward-mode only

Properties of source transformation AD

Advantages/Disadvantages:

- Modified source code can be analysed, to inform a rewrite of the primal to improve performance
- Modified source code can be optimised by the compiler,
- differentiated source code modules can easily be assembled with non- or hand-differentiated code to optimise memory and runtime.
- Compile-time parsing can only take account of information available at compile-time (i.e. information embedded in the code structure), it is oblivious of run-time effect such as values of pointers.
- The entire code needs differentiating, regardless whether or not parts of the code will be used at run-time.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AD via Operator-Overloading

Principle:

- Most modern languages allow operator-overloading, i.e. to define special data-types and then define extensions of standard operations such as $*$ or + for these data-types.
- E.g. we could define a forward derivative-enhanced double in C:

struct \{

double val ;
double val_d ;
\} double_d

- An overloaded multiplication in C++ then would be:

```
double_d operator *( double_d a, double_d b ) {
            double_d prod ;
            prod.val_d = a.val*b.val_d + a.val_d*b.val ;
            prod.val = a.val * b.val ;
return ( prod ) ; }
```


AD via Operator-Overloading

- Operator-overloading very naturally gives rise to a forward-mode differentiation.
- All operators need overloading, all simple data-types such as double promoted to enhanced ones double_d.
- For reverse mode we need create a tape of operations and operands which is then run backwards at the end.

Properties of operator-overloading AD

- High memory requirements due to large tapes.
- The tape is difficult to analyse or inspect, limited possibilites to assemble differentiated parts in other code.
- The tape contains run-time analysis, only required code branches are differentiated.
- All val are calculated, whether or not needed to form val.d. Static compile-time optimisation is not possible.
- S-T AD usually outperforms O-O AD.

Examples 00000000	Introduction 00	Graph view 000000	Matrix view 0000000000000	Reverse-mode 000000000000	Application of AD 000000	AD Tools 000000	Exercises

Operator-overloading AD tools

The majority of AD tools for languages other than Fortran use operator-overloading (O-O):

- ADOL-C (Univ. Paderborn): C,C++. Open-source. The most widely used and most mature tool for $\mathrm{C}, \mathrm{C}++$.
- codipack for $\mathrm{C}++$. Claims to have a more efficient tape implementation.
- fadBad, cppAD for $\mathrm{C}++$
- tools also available for matlab, R

Main source of information on AD: http://www.autodiff.org
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Organisation of the lectures

1. Univariate optimisation

- Bisection, Steepest Descent, Newton's method

2. Multivariate optimisation

- Steepest descent, Newton's method
- and line-search methods: Wolfe and Armijo conditions,
- Quasi-Newton methods,

3. Constrained Optimisation:

- Projected gradient methods,
- Penalty methods, exterior and interior point methods,
- SQP

4. Adjoint methods

- Reversing time, Automatic Differentiation
- Adjoint CFD codes

5. Gradient computation

- Manual derivation, Finite Differences
- Algorithmic and automatic differentiation, fwd and bkwd.

Exercises for AD

1. Perform forward-mode $A D$ to obtain the first derivative of the bi-variate Rosenbrock function coded in multivar_opt.m. Verify the gradients against finite-differences and analytic derivatives.
2. Draw the graph for Rosenbock, perform reverse-mode AD. Verify the gradients.
3. Use Tapenade's online interface to produce derivative code for Rosenbrock in fwd and rev modes. Verify the gradients.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

