Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises 000000000000000000000000000000000000	
	Notes
Introduction to Gradient-Based Optimisation	
Part 5: Computation of derivatives	
Dr. JD. Müller	
School of Engineering and Materials Science, Queen Mary, University of London	
j.mueller@qmul.ac.uk	
UK Fluids Network SIG on Numerical Optimisation with Fluids Cambridge, 8-10 August 2018	
© Jens-Dominik Müller, 2011-18, updated 8/8/18	
1/59 Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises	
Organisation of the lectures 1. Univariate optimisation	Notes
 Bisection, Steepest Descent, Newton's method 	
 Multivariate optimisation Steepest descent, Newton's method 	
and line-search methods: Wolfe and Armijo conditions,Quasi-Newton methods,	
3. Constrained Optimisation:Projected gradient methods,	
 Penalty methods, exterior and interior point methods, SQP 	
 4. Adjoint methods Reversing time, Automatic Differentiation Adjoint CFD codes 	
 5. Gradient computation Manual derivation, Finite Differences 	
 Algorithmic and automatic differentiation, fwd and bkwd. 2/59 	
Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises 000000000 00 00000000000 00000000000 00000000000 00000000000000 000000000000000000000000000000000000	
Outline	Notes
Examples	
Introduction to Algorithmic Differentiation	
Graph view of AD	
Matrix-view of forward-mode AD	
Reverse-mode AD	
Application of AD	
Automatic Differentiation tools	

Examples	Introduction 0 00	Graph view	Matrix view	Reverse-mode	Application of AD	AD Tools	
			Ou	tline			Notes
E×	amples						
In	troduction	n to Algo	orithmic Diffe	rentiation			
Gr	raph view	of AD					
Μ	atrix-view	of forwa	ard-mode AD				
Re	everse-mo	de AD					
Ap	oplication	of AD					
Aı	utomatic [Differenti	iation tools				

Computing the derivative of n-variate Rosenbrock

$$f(\mathbf{x}) = \sum_{i=1}^{N/2} [100(x_{2i-1}^2 - x_{2i})^2 + (x_{2i-1} - 1)^2].$$

- Option 1: derive the derivatives by hand and program,
- Option 2: Finite Differences
- Option 3: Algorithmic Differentiation

Application of AD AD Tools Exercises

Notes

Notes

Analytic derivative of n-variate Rosenbrock

$$f(\mathbf{x}) = \sum_{i=1}^{N/2} [100(x_{2i-1}^2 - x_{2i})^2 + (x_{2i-1} - 1)^2]$$

=
$$\sum_{i=1}^{N/2} [100(x_{2i-1}^4 - 2x_{2i-1}^2 x_{2i} + x_{2i}^2) + x_{2i-1}^2 - 2x_{2i-1} + 1]$$

$$\frac{\partial f(x)}{\partial x_{2i-1}} = 100(4x_{2i-1}^3 - 4x_{2i-1}x_{2i}) + 2x_{2i-1} - 2$$

$$\frac{\partial f(x)}{\partial x_{2i}} = 100(-2x_{2i-1})^2 + 2x_{2i})$$

- needs knowledge of the exact equations of the model
- can be very complex to compute
- needs manual programming
- difficult to verify

Finite difference derivative

Approximate the derivative as a forward difference

$$\frac{\partial f(x)}{\partial x_k} = \frac{f(x + \varepsilon \delta_k) - f(x)}{\varepsilon} + O(\varepsilon)$$

with ε a small perturbation size and δ_k a vector of the same length as x with zeros every where, but one in position k. Similarly with a central difference

$$\frac{\partial f(x)}{\partial x_k} = \frac{f(x + \varepsilon \delta_k) - f(x - \varepsilon \delta_k)}{2\varepsilon} + O(\varepsilon^2)$$

Can we let $\varepsilon \rightarrow 0$ to make the truncation error vanish?

Forward difference error dependence on ε (CFD case)

Notes

9 / 59

Finite differences for gradient computation

Reverse-mode

Application of AD AD Tools

Notes

Notes

- Needs no knowledge of the equations or implementation, can call f(x) as *black-box*.
- Needs careful setting of the stepsize ε :

Matrix view

Introduction Graph view

Examples

- If ε is too large, there is a large truncation error.
- T.E. is $\propto O(\varepsilon)$ for forward or backward differences, one additional evaluation per design variable.
- T.E. is $\propto O(\varepsilon^2)$ for the central difference, but costs two additional evaluations per design variable.
- If ε is too small, there is a large round-off error.

Algorithmic Differentiation (AD)

- Also known as *Automatic Differentiation*.
- A computer program that computes a function f(x) can be viewed as a sequence of simple operations such as addition, multiplication, etc:

$$f(x) = f_n(f_{n-1}(\cdots f_2(f_1(x))))$$

• We can straightforwardly compute the derivative of each of these operations and concatenate the derivatives using the chain rule.

$$\frac{\partial f(x)}{\partial x_i} = \frac{\partial f_n}{\partial f_{n-1}} \cdot \frac{\partial f_{n-1}}{\partial f_{n-2}} \cdot \cdots \cdot \frac{\partial f_2}{\partial f_1} \cdot \frac{\partial f_1(x)}{\partial x_i}$$

- While f_1 can only be a function of the input variables x, f_n will typically also depend on intermediate results f_{n-1}, f_{n-2}, \ldots
- We can proceed to compute the derivative (automatically) instruction by instruction.

Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises

Simple example of AD

Using the chain rule, compute $\frac{\partial f}{\partial x_1}$ for

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \pi \cdot \cos(3x_1 + 2x_2 + x_3) \cdot \pi \cdot \sin(3x_1 + 2x_2 + x_3) \\ \pi \cdot \sin(3x_1 + 2x_2 + x_3) \cdot x_1 \end{bmatrix}$$

```
u = 3*x(1)+2*x(2)+x(3)gx(1) = 1pi = 3.14gx(2) = gx(3) = 0v = pi*cos(u)gu = 3*gx(1)+2*gx(2)+gx(3)w = pi*sin(u)gv = -pi*sin(u)*gusum = v + ugw = pi*cos(u)*guy(1) = v * wgy(1) = gv*w + v*gwy(2) = w*x(1)gy(2) = gw*x(1) + gx(1)*w
```

The initial values in the chain rule need to be *seeded*, either set at the beginning of the computation, or computed in a preceding function call.

							14 / 59
Examples	Introduction	Graph view ○●○○○○	Matrix view	Reverse-mode	Application of AD	AD Tools	Exercises O
			Algorithm	s as grap	hs		
		Original į	program				
		alpha 🗌					
		rmediate ^L alues					
		J	Ŭ				
			Forward di	fferentiatio	n IIIIII		
	- Ve	ŢŢ	¥КД	ŢŢ	7 ਦੇਖੋ		
		Ż			∇		

• Forward: propagate influence of each alpha through program

Graph view of the example algorithm

Reverse-mode Application of AD AD Tools Exercises

16 / 59

Notes

Notes			

17 / 59 Application of AD AD Tools Exercises

 Examples
 Introduction
 Graph view
 Matrix view

 00000000
 00
 0000000
 00000000

Add partial derivatives along each path

Reverse-mode

Notes

18 / 59

Examples Introduction Graph view Matrix view

Forward-mode AD using the graph

Reverse-mode

- Looking at the graph leading to the computation of y(1) we have two incoming paths for v and w.
- The partial derivatives along the paths are $\frac{\partial y(1)}{\partial w} = v$, $\frac{\partial y(1)}{\partial v} = w$.
- The linearised change in y(1) is then

$$\Delta y(1) = \frac{\partial y(1)}{\partial v} \Delta v + \frac{\partial y(1)}{\partial w} \Delta w = w \Delta v + v \Delta w$$

 The corresponding code statement is gy(1) = w*gv + v*gw

							19 / 59
amples	Introduction	Graph view	Matrix view •000000000000000000000000000000000000	Reverse-mode	Application of AD	AD Tools	Exercises O
			Ou	tline			
Ex	amples						
Int	roduction	to Algo	rithmic Diffe	rentiation			
Gr	aph view	of AD					
Ma	atrix-view	of forwa	rd-mode AD				
Re	verse-mo	de AD					
Ар	plication	of AD					

Application of AD AD Tools

Exercises

Notes

20 / 59 Application of AD AD Tools Introduction Matrix view Exercises Graph view Reverse-mode Matrix view of the simple example I • The example function is 3-variate, but there are 3 further intermediate and 2 dependent i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector. Step 1: gx(1) = !assignment of gx(1)ext. 1 gx_1 gx_1 gx₂ 0 0 gx2 0 0 0 gx3 gx3 0 0 0 0 gu gu 0 0 0 0 0 gv gv 0 0 0 0 0 0 gw gw 0 0 0 0 0 0 0 gу₁ gy₁

0

 $gy_2 \rfloor_1$

0

0 0

0

0

0 0

Notes

21 / 59

 $gy_2 \rfloor_0$

Examples Introduction Graph view Matrix view

Matrix view of the simple example I

Reverse-mode

Application of AD AD Tools

• The example function is 3-variate, but there are 3 further intermediate and 2 *dependent* i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector.

Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further intermediate and 2 *dependent* i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector.

Step 3: gx(3) = ! ext. assignment of gx(3)

[gx ₁]		[1								gx ₁		
gx ₂		0	1							gx2		
gx3		0	0	1						gx3		
gu	=	0	0	0	0					gu		
gv	_	0	0	0	0	0				gv		
gw		0	0	0	0	0	0			gw		
gy ₁		0	0	0	0	0	0	0		gy ₁		
_ gy₂ _	3	0	0	0	0	0	0	0	0 _	gy2	2	
												23 / 59

Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further intermediate and 2 *dependent* i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector.

Step 4: gu = 3*gx(1)+2*gx(2)+gx(3)

gx1]	Γ1							٦	$\begin{bmatrix} gx_1 \end{bmatrix}$
gx2		0	1							gx2
gx3		0	0	1						gx3
gu	=	3	2	1	0					gu
gv	_	0	0	0	0	0				gv
gw		0	0	0	0	0	0			gw
gy ₁		0	0	0	0	0	0	0		gУ1
_ gy₂ _	4	[0	0	0	0	0	0	0	0]	$\begin{bmatrix} gy_2 \end{bmatrix}_3$

Notes

Exercises

Notes

Notes

Exercises

Matrix view of the simple example I

Reverse-mode

Application of AD AD Tools

gx₁

gx₂

gx3

gu

gv

gw

25 / 59

Exercises

• The example function is 3-variate, but there are 3 further intermediate and 2 *dependent* i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector.

```
Step 5:
              gv = -gu*pi*sin(u)
                 1
   gx<sub>1</sub>
                 0
                    1
   gx2
                 0
                    0
                        1
   gx3
                 0
                     0
                        0
                                 1
    gu
```

0

0 0 0 0 0 0 0 gу₁ gу₁ 0 0 0 0 0 0 0 0 gy₂ gy₂ 5 Application of AD AD Tools Introduction Graph view Matrix view Examples Reverse-mode Matrix view of the simple example I • The example function is 3-variate, but there are 3 further

 $-\pi \sin(u)$

0

0

0

 The example function is 3-variate, but there are 3 further intermediate and 2 *dependent* i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector.

Step 6: gw = gu*pi*cos(u)

0 0 0

0 0

gv

gw

$\begin{bmatrix} g_{X_1} \\ g_{X_2} \\ g_{X_3} \\ g_{U} \\ g_{V} \\ g_{W} \\ g_{Y_1} \\ g_{Y_2} \end{bmatrix}_6$	=	$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 $	1 0 0 0 0 0	1 0 0 0 0 0	$\begin{array}{c} 1 \\ 0 \\ \pi \cos(u) \\ 0 \\ 0 \end{array}$	1 0 0	0 0 0	0	0	$\begin{bmatrix} g_{X_1} \\ g_{X_2} \\ g_{X_3} \\ g_U \\ g_V \\ g_W \\ g_{Y_1} \\ g_{Y_2} \end{bmatrix}_5$
--	---	---	----------------------------	----------------------------	--	-------------	-------------	---	---	--

Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further intermediate and 2 *dependent* i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector.

Step 7: gy(1) = gv*w + v*gw

gx1]	[1]							1	[gx ₁]
gx2		0	1							gx ₂
gx3		0	0	1						gx3
gu	=	0	0	0	1					gu
gv	_	0	0	0	0	1				gv
gw		0	0	0	0	0	1		ļ	gw
<i>ВУ</i> 1		0	0	0	0	W	V	0		gy ₁
_ gy₂ _] ₇	[0	0	0	0	0	0	0	0]	$\begin{bmatrix} gy_2 \end{bmatrix}_6$

Notes

Exercises

Notes

Notes

26 / 59

Exercises

Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools

Matrix view of the simple example I

• The example function is 3-variate, but there are 3 further intermediate and 2 *dependent* i.e. output variables, hence each program statement can be seen as multiplying a 8x8 matrix with an 8x1 column vector.

Step 8:
$$gy(2) = gw * x(1) + w * gx(1)$$

amples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises

What is forward-mode AD computing?

- Forward-mode AD computes the Jacobian-vector product $z_n = E_n E_{n-1} \cdots E_2 E_1 z_1 = E z_1 = J z_1$
- · Hiding the internal intermediate variables, we are left with

$$\nabla f \cdot \dot{x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \cdots & & & & \\ \frac{\partial f_M}{\partial x_1} & \frac{\partial f_M}{\partial x_2} & \cdots & \frac{\partial f_M}{\partial x_n} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \dot{y}$$

- AD computes a *directional derivative*.
- For *n* inputs to *f* (at program start), we need to invoke the differentiated chain *n* times, once for each column of the Jacobian with a different seed vector \dot{x} .
- We compute the derivatives of all output variables in one Jacobian column at each invocation of f_d.

$$\begin{array}{c} \nabla f \cdot \dot{x} = \dot{y} \\ \left[\begin{array}{ccc} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \end{array} \right] \left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{array} \right] = \left[\begin{array}{c} \dot{y}_1 \\ \dot{y}_2 \end{array} \right]$$

Using $\dot{x} = [1, 0, 0]^T$, we find

$\int \partial y_1$	∂y_1	∂y_1	1		∂v₁]
$\frac{\partial x_1}{\partial y_2}$	$\frac{\partial x_2}{\partial y_2}$	$\frac{\partial x_3}{\partial y_2}$	0	=	$\frac{\partial y_1}{\partial x_1}$
$\int \overline{\partial x_1}$	$\overline{\partial x_2}$	∂x_3	0		

Seeding the inputs \dot{x}_i one at a time, we extract one column of the Jacobian at a time.

Notes

Notes

Examples Introduction Graph view Matrix view

Summary of forward-mode AD

Reverse-mode

Application of AD AD Tools

 The forward mode computes directional derivatives by multiplying the Jacobian ^{∂y}/_{∂x} with a direction (or weighting) vector *x*:

$$\dot{y} = \frac{\partial y}{\partial x} \dot{x}$$

- Forward mode follows the statements in the same order as in the original *primal* function.
- For *n* independent (input) var., f_d needs to be invoked *n* times to compute one row for each input in the Jacobian.
- All rows of one columns of the Jacobian (different output variables) are obtained with one invocation of f_d.
- Typically in engineering applications we have many more input variables (design variables) than output variables (cost functions).

Hence the forward mode is expensive, as it scales linearly with the number of design variables and is constant in the number of cost functions. 31/59

Forward mode with vector output function

 Viewed from the outside we compute the Jacobian-vector product z_n = E_nE_{n-1} ··· E₂E₁z₁ = Ez₁ = Jp

$$\nabla f \cdot p = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}$$

• If there are *m* components of the output function *f*, we obtain all rows in one column at the same time, but still need to invoke the differentiated routine *n* times with *n* different seed vectors *p*.

							32 / 59	
Examples	Introduction	Graph view	Matrix view	Reverse-mode • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Application of AD	AD Tools	Exercises O	
			Out	line				Notes
Exa	amples							
Int	roduction	to Algo	rithmic Diffe	rentiation				
Gra	aph view	of AD						
Ma	ıtrix-view	of forwa	rd-mode AD					
Rev	verse-moo	de AD						
Ap	plication	of AD						
Au	tomatic [Differenti	ation tools					

Notes

Forward: propagate influence of each alpha through programReverse: trace back every influence on result. One pass is

enough to get all derivatives.

Reverse-mode algorithmic differentiation

Reverse-mode

Forward-mode computes

Introduction Graph view Matrix view

$$\dot{y} = \frac{\partial y}{\partial x}\dot{x}$$

What if we computed

$$\bar{y}\frac{\partial y}{\partial x} = \bar{x}.$$

Note that \bar{y} has to be a row vector with dimension 2 to be multiplied with the 2 × 3 matrix of our example. This is the *reverse-mode* of AD.

Again, a directional derivative is computed, but this time a *vector-matrix* product, or a transpose matrix-vector product.

Notes

34 / 59

Notes

Exercises

Application of AD AD Tools

Matrix view

Application of AD AD Tools Exercises

Reverse-mode AD in our example:

Reverse-mode

$$\begin{bmatrix} \bar{y}_1, \bar{y}_2 \end{bmatrix} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \bar{x}_1, \bar{x}_2, \bar{x}_3 \end{bmatrix}$$

Using $\bar{y} = [1, 0]$, we find

$$\begin{bmatrix} 1,0 \end{bmatrix} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1}, \frac{\partial y_1}{\partial x_1}, \frac{\partial y_1}{\partial x_3} \end{bmatrix}$$

Seeding the outputs \bar{y}_i one at a time, we extract one row of the Jacobian at a time.

							37 / 59	
Examples	Introduction	Graph view	Matrix view	Reverse-mode	Application of AD	AD Tools	Exercises O	
		Prope	erties of re	everse-mo	de AD			No
				erse-mode A	D computes	а		_
directional derivative.						_		
• All complexity arguments transpose:							_	
 Each invocation of f provides one row the Jacobian: sensitivity of one output variable w.r.t. all n input variables. 								
• For <i>m</i> outputs $y_1 \cdots y_m$, \overline{f} needs to be invoked <i>m</i> times.								
•	5.	, ,	0		have many n variables (co	•	ut	_
	functio		,		,			-
	Hence	the rever	se mode is c	heap, as its	cost is linear	r in the		

number of cost functions, but is independent of the number of design variables

How to apply reverse-mode AD?

Forward-mode computes

$$\dot{y} = \frac{\partial y}{\partial x} \dot{x} = E_n E_{n-1} \cdots E_2 E_1 \dot{x} = E \dot{x}.$$

Applying simple rules of transpose matrix multiplication:

$$\left(\bar{y} \frac{\partial y}{\partial x} \right)^T = \frac{\partial y}{\partial x}^T \bar{y}^T = E^T \bar{y}^T = (E_n E_{n-1} \cdots E_2 E_1)^T \bar{y}^T$$
$$= E_1^T E_2^T \cdots E_{n-1}^T E_n^T \bar{y}^T$$

- We apply the same differentiation operations E_i as in the forward mode
- But we accumulate the chain rule in reverse, starting with the final operation E_n .
- We follow the logic of the primal in *reverse* hence the name reverse-differentiation.

Notes

Examples	Introduction	Graph view	Matrix view

Reverse-mode

Application of AD AD Tools Exercises

"Transposing" a statement in reverse-mode

Primal statement: y(1) = v * w

forward-mode

$$gy(1) = gv^*w + v^*gw$$

vb = vb + w*yb(1)wb = wb + v*yb(1)

$$\begin{bmatrix} g_{V} \\ g_{W} \\ g_{Y_{1}} \end{bmatrix}_{7} = \begin{bmatrix} 1 \\ 0 & 1 \\ w & v & 0 \end{bmatrix} \begin{bmatrix} g_{V} \\ g_{W} \\ g_{Y_{1}} \end{bmatrix}_{6} \begin{bmatrix} vb \\ wb \\ yb_{1} \end{bmatrix}_{6} = \begin{bmatrix} 1 & 0 & w \\ 0 & 1 & v \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} vb \\ wb \\ yb_{1} \end{bmatrix}_{6}$$

 $\dot{z}_{n+1} = E_n \dot{z}_n$

$$\overline{z}_n E_n = \overline{z}_{n-1} (\overline{z}_n E_n)^T = E_n^T \overline{z}_n^T = \overline{z}_{n-1}^T$$

$$\end{bmatrix}_{7} = \begin{bmatrix} 1 & & \\ 0 & 1 & \\ w & v & 0 \end{bmatrix} \begin{bmatrix} gv \\ gw \\ gy_{1} \end{bmatrix}_{6} \begin{bmatrix} vb \\ wb \\ yb_{1} \end{bmatrix}_{6} = \begin{bmatrix} 1 & 0 & w \\ 0 & 1 & v \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} vb \\ wb \\ yb_{1} \end{bmatrix}$$

$$\bar{z}_n E_n = \bar{z}_{n-1}$$

$$(\bar{z}_n E_n)^T = E_n^T \bar{z}_n^T =$$

- We accumulate the change going through the graph in backward order
- The path between v and y(1) carries the partial derivative w.
- Hence along that path we accumulate vb = vb + w*y(1)
- Similarly for w: wb = wb + v*y(1)
- But w also contributes to y(2) with derivative x(1), hence wb = wb + x(1)*y(2)
- In our primal code y(2) is computed last, hence the increment of x(1)*y(2) is the first, so we could omit initialising wb=0 and write wb = x(1)*y(2)

Notes

Notes

42 / 59

00000000 00 000000 00000000000000000000	000000000000000000000000000000000000000
	verse mode AD $(x_2 + x_3) \cdot \pi \cdot \sin(3x_1 + 2x_2 + x_3)$ $(x_2 + x_3) \cdot x_1$
<pre>gx(1) = 1 gx(2) = gx(3) = 0 gu = 3*gx(1)+2*gx(2)+gx(3) u = 3*x(1)+2*x(2)+x(3) pi = 3.14 gv = -gu*pi*sin(u) v = pi*cos(u) gw = gu*pi*cos(u) w = pi*sin(u) gy(1) = gv*w + v*gw y(1) = v * w gy(2) = gw*x(1) + gx(1)*w y(2) = w*x(1)</pre>	<pre>yb(1) = 1., yb(2) = 0. u = 3*x(1) + 2*x(2) + x(3) pi = 3.14 v = pi*cos(u) w = pi*sin(u) xb(:) = 0. wb = x(1)*yb(2) xb(1) = xb(1) + w*yb(2) vb = w*yb(1) wb = wb + v*yb(1) ub = pi*cos(u)*wb]-</pre>
Examples Introduction Graph view Matrix view 00000000 00 0000000 000000000000000000000000000000000000	Reverse-mode Application of AD AD Tools Exercises 00000000000 000000 00000000 0

Reverse-mode

Introduction Graph view Matrix view

Examples

Implementation the reverse-mode AD

- For each cost-function we need to seed with $\bar{y}_i = 1$.
- We obtain all the derivatives of y_i w.r.t. all x in one invocation.
- The logic is followed in reverse, hence we need to store or recompute all the intermediate values needed to compute the derivatives.

							44 / 59
xamples	Introduction	Graph view	Matrix view	Reverse-mode	Application of AD	AD Tools	Exercises
			Out	tline			
Exa	amples						
Inti	Introduction to Algorithmic Differentiation						
Gra	aph view	of AD					
Ma	itrix-view	of forwa	rd-mode AD				
Rev	Reverse-mode AD						
Ap	plication	of AD					
Au	tomatic [Differenti	ation tools				

Notes

Exercises

Application of AD AD Tools

Examples	Introduction	Graph view	Matrix view	

Forward-mode AD at function level

Reverse-mode

So far we have seen AD applied at the level of the code statements, we can also 'zoom out' and consider AD at the level of functions.

```
! a,e variable, c constant
! inputs. Scalar J.
[a,f] =
  pre_proc ( a, c, e )
[a,h] =
  solve ( a, f )
[J] =
  obj ( a, c, h, e )
```

```
! seed
ga(:)=0,ge(:)=0,ga(1)=1
[a,ga,f,gf] =
gpre_proc(a,ga,c,e,ge)
[a,ga,h,gh] =
gsolve(a,ga,f,gf)
[J,gJ] =
gobj(a,ga,c,h,gh,e,ge)
```

Application of AD

AD Tools

Exercise

Notes

Notes

Reverse mode AD at function level

In reverse mode the program traverses the graph from end to start: inputs and outputs reverse roles for the perturbations 'b'.

! a,e variable, c constant
! inputs. Scalar J.
[a,f] =
pre_proc (a, c, e)
[a,h] =
solve (a, f)
[J] =
obj (a, c, h, e)

!seed ab=0,hb=0,eb=0,Jb=1 ! recompute e,f [a,f] = pre_proc (a, c, e) [a,h] = solve (a, f) [J,ab,hb,eb] = objb(a,ab,c,h,hb,e,eb,Jb) [a,ab,h,fb] = solveb(a,ab,f,hb) [a,ab,f,eb] = pre_procb(a,ab,c,e,eb,fb)

						47 / 59
Examples	Introduction	Graph view	Matrix view	Application of AD	AD Tools	

Linear operators

```
ga,ge,gf = .... ! seed ,
function [r,gr] =
  glinFun ( a,ga,e,ge,f,gf )
  r = 3*a + 2*e + f
  gr = 3*ga + 2*ge + gf
end function
```

! a,e,f variable inputs, function [r] = linFun (a,e,f) r = 3*a + 2*e + f end function

Alternatively, as the function is linear and gr does not depend on the values of a,e,f, call the original, *primal*, linFun twice:

ga,ge,gf = ! seed ,
[r] = linFun(a,e,f)
[gr] = linFun(ga,ge,gf)

From Algorithmic to Automatic Differentiation

Reverse-mode

Application of AD

AD Tools

- Forward-mode steps through the statements in the same order, add a derivative computation statement before each primal statement.
- This is a straightforward (i.e. rigorous and stupid) process, why not have this done by software.
- The reverse-mode records all partial derivatives in each statement, then accumulates the derivatives in reverse.
- This is a straightforward (i.e. rigorous and stupid), potentially memory consuming process, why not have this done by software.

There are two main options to apply automatic differentiation:

- Source-transformation
- Operator-overloading

52 / 59
ples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises

AD via source transformation

Procedure:

- Parse (i.e. interpret) the statements in the primal source code
- then add the necessary statements to produce modified source code
- then compile the modified source code.

Source-transformation AD tools:

- Tapenade (INRIA): Fortran, C. Forward and reverse, most popular tool.
- TAF, TAC (FastOpt, commercial): Fortran, C. Forward and reverse, produces highly performing code.
- TAMC (FastOpt, free to use): Fortran

Matrix view

• AdiFor (Argonne, free to use): Fortran, forward-mode only

53 / 59

Application of AD

AD Tools

0000000

Properties of source transformation AD

Advantages/Disadvantages:

Graph view

Introduction

- Modified source code can be analysed, to inform a rewrite of the primal to improve performance
- Modified source code can be optimised by the compiler,
- differentiated source code modules can easily be assembled with non- or hand-differentiated code to optimise memory and runtime.
- Compile-time parsing can only take account of information available at compile-time (i.e. information embedded in the code structure), it is oblivious of run-time effect such as values of pointers.
- The entire code needs differentiating, regardless whether or not parts of the code will be used at run-time.

Notes

Notes

AD via Operator-Overloading

Principle:

Introduction

- Most modern languages allow operator-overloading, i.e. to define special data-types and then define extensions of standard operations such as * or + for these data-types.
- E.g. we could define a forward derivative-enhanced double in C:

```
struct {
   double val ;
   double val_d ;
} double_d
```

Graph view

• An overloaded multiplication in C++ then would be:

```
double_d operator *( double_d a, double_d b ) {
   double_d prod ;
   prod.val_d = a.val*b.val_d + a.val_d*b.val ;
   prod.val = a.val * b.val ;
return ( prod ) ; }
```


Notes

AD Tools

Notes

AD via Operator-Overloading

Reverse-mode

Application of AD

Application of AD

AD Tools

• Operator-overloading very naturally gives rise to a forward-mode differentiation.

Matrix view

- All operators need overloading, all simple data-types such as double promoted to enhanced ones double_d.
- For reverse mode we need create a *tape* of operations and operands which is then run backwards at the end.

Properties of operator-overloading AD

- High memory requirements due to large tapes.
- The tape is difficult to analyse or inspect, limited possibilites to assemble differentiated parts in other code.
- The tape contains run-time analysis, only required code branches are differentiated.
- All val are calculated, whether or not needed to form val.d. Static compile-time optimisation is not possible.

Reverse-mode

• S-T AD usually outperforms O-O AD.

Matrix view

-			
Operator-over	loading	AD	tools

Notes

56 / 59

The majority of AD tools for languages other than Fortran use operator-overloading (O-O):

- ADOL-C (Univ. Paderborn): C,C++. Open-source. The most widely used and most mature tool for C,C++.
- codipack for C++. Claims to have a more efficient tape implementation.
- fadBad, cppAD for C++

Introduction Graph view

• tools also available for matlab, R

Main source of information on AD: http://www.autodiff.org

Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises 000000000 00 00000000000 00000000000 0000000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 000000000000 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000 000000000000000000000000000000000000	
Organisation of the lectures	Notes
 Univariate optimisation Bisection, Steepest Descent, Newton's method 	
 2. Multivariate optimisation Steepest descent, Newton's method and line-search methods: Wolfe and Armijo conditions, Quasi-Newton methods, 	
 3. Constrained Optimisation: Projected gradient methods, Penalty methods, exterior and interior point methods, SQP 	
 4. Adjoint methods Reversing time, Automatic Differentiation Adjoint CFD codes 	
 5. Gradient computation Manual derivation, Finite Differences Algorithmic and automatic differentiation, fwd and bkwd. 58/59 	
Examples Introduction Graph view Matrix view Reverse-mode Application of AD AD Tools Exercises	
Exercises for AD	Notes
 Perform forward-mode AD to obtain the first derivative of the bi-variate Rosenbrock function coded in multivar_opt.m. Verify the gradients against finite-differences and analytic derivatives. 	

- 2. Draw the graph for Rosenbock, perform reverse-mode AD. Verify the gradients.
- 3. Use Tapenade's online interface to produce derivative code for Rosenbrock in fwd and rev modes. Verify the gradients.

59 / 59