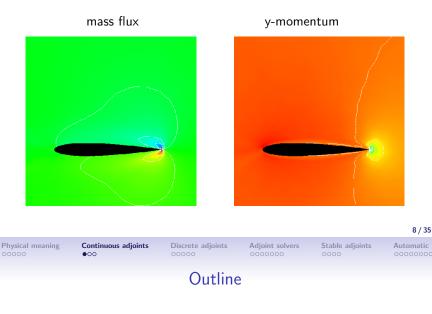

Physical meaning	Continuous adjoints 000	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic 00000000	
						Notes
Int	roduction to Pa	Gradient-E		imisation		
	Queen	Dr. JD. Mi gineering and Mary, Universi .mueller@qmul	Materials Sc ty of London			
UK	Fluids Network S Carr	ilG on Numerica bridge, 8-10 Αι		n with Fluids		
	© Jens-Domir	nik Müller, 2011	-18, updated	8/8/18		
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	1/35 Automatic	
00000	000	00000	000000	0000	00000000	
1 Uni	Organ variate optimisati	isation of t	ne lecture	5		Notes
	Bisection, Steep		ewton's metho	bd		
	ltivariate optimisa					
•	Steepest descen and line-search	methods: Wolfe		conditions,		
	Quasi-Newton r					
•	strained Optimisa Projected gradio Penalty method SQP	ent methods,	nterior point	methods,		
	dient computatio	n				
	 Manual derivati Algorithmic and 			rd and bkwd		
	oint methods					
	Reversing time, Adjoint CFD co		erentiation			
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	2 / 35 Automatic	
00000	000	Outline	000000	0000	0000000	
		Outime				Notes
Physical	meaning of the	adjoint equat	ions			
Continu	ous adjoints					
Discrete	adjoints					
Availabl	e adjoint solvers	i				
Stable d	iscrete adjoint s	olvers				
Automa	tic adjoint build					


Forward approach: send a perturbation out

Reverse, adjoint approach: trace back an incoming perturbation

Use the Force! Use the Force of the adjoint approach.

NACA 0012, Ma=0.4, $\alpha=2^\circ$ Sensitivity w.r.t. lift

Physical meaning of the adjoint equations

Continuous adjoints

Discrete adjoints

Available adjoint solvers

Stable discrete adjoint solvers

Automatic adjoint build

Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic
	000	00000			

The continuous adjoint

Minimise the objective J, subject to the constraint to satisfy the conservation equations $\mathbf{R}(U, \alpha) = 0$:

$$I(U, \alpha) = J(U, \alpha) - \lambda^T \mathbf{R}(U, \alpha)$$

A linearised change in I is then

$$dI(U,\alpha) = \left(\frac{\partial J}{\partial U} - \lambda^T \frac{\partial \mathbf{R}}{\partial U}\right) dU + \left(\frac{\partial J}{\partial \alpha} - \lambda^T \frac{\partial \mathbf{R}}{\partial \alpha}\right) d\alpha$$

Choose λ to eliminate dU,

$$\left(\frac{\partial J(U,\alpha)}{\partial U} - \lambda^T \frac{\partial \mathbf{R}(U,\alpha)}{\partial U}\right) = 0$$

Then

$$dI(U,\alpha) = \left(\frac{\partial J(U,\alpha)}{\partial \alpha} - \lambda^{T} \frac{\partial \mathbf{R}(U,\alpha)}{\partial \alpha}\right) d\alpha$$

i.e., we no longer need to compute the state perturbation dU.

					10 / 35
Physical meaning	Continuous adj ○○●	oints Discrete adj	joints Adjoint solvers	Stable adjoints	Automatic
	E	xample adj	oint operator	S	
		primal	adjoint		
	-	$\frac{\partial u}{\partial u} = \varepsilon \frac{\partial^2 u}{\partial u}$	$-\frac{\partial v}{\partial r} - \varepsilon \frac{\partial^2 v}{\partial r}$		
		$\frac{\partial x}{\partial x} = \varepsilon \frac{\partial x^2}{\partial x^2}$	$\partial x \partial x^2$		
		$ abla \cdot (k \nabla u)$	$ abla \cdot (k abla v)$		

 $\partial^2 v$

 $\overline{\partial x^2}$

∂u

 $\overline{\partial x}$

 ∂v

∂t ∂u

 $\overline{\partial t}$

(Source: Giles, Pierce, 2001, "Introduction to the adjoint approach in design")

∂u

 $\overline{\partial t}$

дu

 $\partial^2 u$

 $\overline{\partial x^2}$

∂u

 $\overline{\partial x}$

 $\frac{\partial u}{\partial t}$ +

					11 / 35
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic
		Outline	9		
Physical	meaning of the	e adjoint equat			
Continuo	ous adjoints				
Discrete	adjoints				
Available	e adjoint solvers				
Stable d	iscrete adjoint s	solvers			
Automat	tic adjoint build				

Notes

Notes

12 / 35

Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic
		00000			00000000

The discrete adjoint

Navier Stokes equations, fixed-point iteration to steady state:

$$R(U(\alpha), \alpha) = 0$$

Linearisation with respect to a design (control) variable α

$$\frac{\partial R}{\partial U}\frac{\partial U}{\partial \alpha} = -\frac{\partial R}{\partial \alpha}$$
$$\mathbf{A}u = f.$$

Sensitivity of an objective function L with respect to α

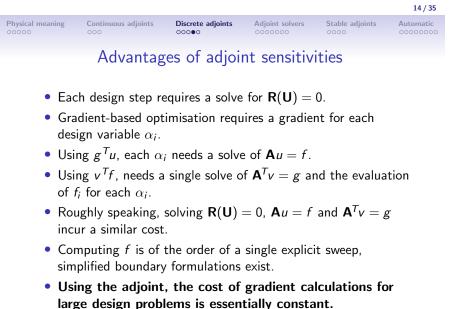
$$\frac{dL}{d\alpha} = \frac{\partial L}{\partial \alpha} + \frac{\partial L}{\partial U} \frac{\partial U}{\partial \alpha} = \frac{\partial L}{\partial \alpha} + g^{T} u = \frac{\partial L}{\partial \alpha} + g^{T} \mathbf{A}^{-1} f$$

 $\frac{\partial L}{\partial \alpha}$ is directly computable, $g^T u$ requires an expensive solve for the perturbation flow field u for each α_i .

The Adjoint Equations

Regroup the terms in the sensitivity computation:

$$\frac{dL}{d\alpha} = \frac{\partial L}{\partial \alpha} + g^{T} \mathbf{A}^{-1} f = \frac{\partial L}{\partial \alpha} + \left(\mathbf{A}^{-T} g \right)^{T} f = \frac{\partial L}{\partial \alpha} + v^{T} f$$


leads to the definition of the adjoint equation:

$$\mathbf{A}^{-T}g = \mathbf{v}, \quad \text{i.e.} \quad \mathbf{A}^{T}\mathbf{v} = g$$
$$\left(\frac{\partial L}{\partial R}\frac{\partial R}{\partial U}\right)^{T} = \left(\frac{\partial R}{\partial U}\right)^{T}\frac{\partial L}{\partial R}^{T} = \left(\frac{\partial L}{\partial U}\right)^{T}.$$

From this follows the Adjoint Equivalence

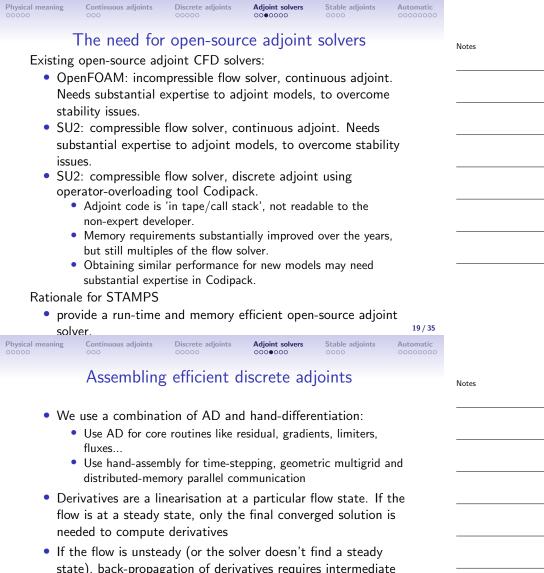
$$g^{T}u = (\mathbf{A}^{T}v)^{T}u = v^{T}\mathbf{A}u = v^{T}f$$

Using $v^T f$, needs a single solve of $\mathbf{A}^T v = g$ and the evaluation of f_i for each α_i .

Notes

Notes		
		,

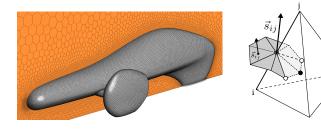
Physical meaning	Continuous adjoints	Discrete adjoints 0000●	Adjoint solvers	Stable adjoints	Automatic	
	Advantages	s of adjoint	sensitiviti	es (II)		Notes
the • Th	e forward metho en the change in e adjoint solutio urce term f onto	functional as on directly com	g ^T u. putes the in			
	e then need to e turbation α_i .	valuate the sou	urce <i>f_i</i> due to	o a design		
• For a single design parameter, the cost of $g^T u$ and $v^T f$ are the same.						
	ing the adjoint ge design prob		-			


					16 / 35
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic
		Outlin	е		
Physical	l meaning of the	e adjoint equa	tions		
Continu	ous adjoints				
Discrete	adjoints				
Availabl	e adjoint solvers	5			
Stable c	liscrete adjoint s	solvers			
Automa	tic adjoint build				

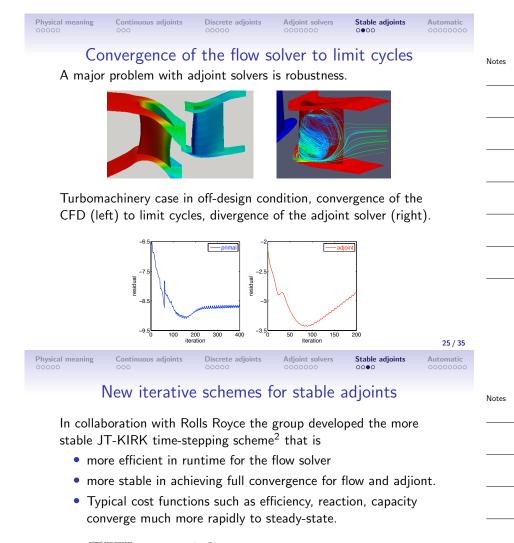
- Ansys Fluent: incompressible, now also compressible. A mix of continuous and discrete.
- STAR CCM+: discrete
- Numeca: continuous

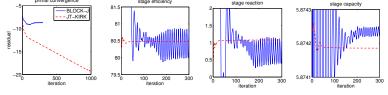
Aerospace:

- Rolls Royce: hydra (discrete)
- Airbus/DLR/Onera: tau (discr.), Flower (cont.), Elsa (cont.)
- MTU/DLR: trace (discr).



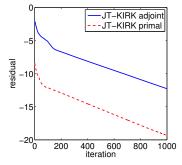
- state), back-propagation of derivatives requires intermediate flow states. This typically requires large amount of memory, but can be reduced with check-pointing.
- In the first instance, focus on steady-state.


STAMPS: discretisation


Source-Transformation Adjoint Multi-Parametrisation, (Physics, Parallelism) Solver

- Unstructured 3-D finite volume, vertex-centred solver.
- Physics: inviscid, laminar, RANS-turbulent ideal gas.
- Mesh-deformation coupled with a variety of geometric parametrisations
- Interfaces for FSI, CHT.

Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers ○○○○○●○	Stable adjoints	Automatic	
	STA	MPS: discr	etisation			Notes
• •	finite-volume co	•				
	npressible formu JSCL reconstruc					
	de-centred discre					
	l-based gradient					
•	alart-Allmaras tu olicit, block-Jacc					
	steady-state an		. ,	· imesteppi	.9	
	IRES + ILU pre					
• Pai	rallelisation with	MPI.				
¹ Xu, Mi	üller: JT-KIRK, JCP 2015				22 / 35	
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic	
		PS: design				Notes
	'S is specifically crete adjoint sol	-	•			
sol	ver: linear prope					
-	aranteed. ly differentiable	with AD Tool	Tapenade (lı	nria, France)	in	
	igent and adjoin		of the adjoir	nt code is		
	npletely automa penade uses sou		tion: the me	mory use and	1	
	U-time per itera erall run-time of					
flov	Ν.	-				
	upled with a nur de-based, NURE	-			d.	
• cou	upling with Calc	ulix structures	•			
	rently undertake joint-based mesl		currently be	eing develope	d.	
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	23 / 35 Automatic	
00000	000	00000	000000	•000	0000000	
		Outline	2			Notes
Physica	I meaning of the	e adioint equat				
Continu	ous adjoints					
Discrete	e adjoints					
Availabl	le adjoint solvers					
Stable o	discrete adjoint s	solvers				
Automa	tic adjoint build					


²S. Xu et al, "Stabilisation of discrete steady adjoint solvers", JCP 2015

Adjoint solvers

Discrete adjoints

Stable adjoints: essential for industrial optimisation

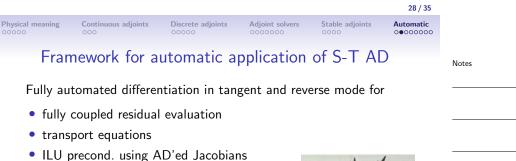
- Most importantly, convergence of the discrete adjoint can be achieved even for mildly unsteady flow situations.
- This is an essential ingredient for industrial application of gradient-based optimisation using adjoint methods.

Continuous adjoints

Physical meaning

Convergence history of both JT-KIRK primal and adjoint solvers.

Stable adjoints


000

Notes

26 / 35

Automatio

Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic •0000000	
		Outline	2			Notes
Physica	l meaning of the	e adjoint equat				
Continu	ous adjoints					
Discrete	e adjoints					
Availabl	le adjoint solvers	5				
Stable o	liscrete adjoint s	solvers				
Automa	itic adjoint build					

- Surface sensitivity projection
- adhering to coding templates ensures AD'ability
- two-layer halo MPI parallelisation: no MPI comm inside the FPI loop, no need to differentiate through MPI calls.
- Extensive use of Multi-Activity mode in Tapenade to derive efficient code for specialised derivative instances.

					29 / 35
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic
	Provide	ed fixed-poi	int iterato	rs	

Simplified compressible fixed-point iterator

```
call initialise_flow ( \leftarrow U )
call metrics ( \rightarrow X, \leftarrow Nrm )
do nIter = 1,mIt
call residual ( \rightarrow U, \rightarrow Nrm, \leftarrow R )
call update ( \rightarrow R, \rightleftharpoons U )
end do
call cost_fun ( \rightarrow U, \rightarrow Nrm, \leftarrow J )
```

Adjoint iterator using 'simple AD'.

```
 \begin{array}{l} \overline{U}=0\\ \text{call }\overline{\text{cost\_fun}} \ ( \ \leftarrow \overline{U}, \ \leftarrow \overline{\text{Nrm}}, \ 1 \ )\\ \text{do nIter = mIt,1,-1}\\ \text{call }\overline{\text{update}} \ ( \ \leftarrow \overline{R}, \ \rightleftharpoons \overline{U} \ )\\ \text{call }\overline{\text{residual}} \ ( \ \leftarrow \overline{U} \ \leftarrow \overline{\text{Nrm}}, \ \rightarrow \overline{R})\\ \text{end }\text{do}\\ \text{call }\overline{\text{metrics}} \ ( \ \leftarrow \overline{X}, \ \rightarrow \overline{\text{Nrm}} \ ) \end{array}
```


Notes	

30 / 35

Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic	
	Provide	ed fixed-po	int iterato	rs		Notes
-	iterator using 's =0	simple AD'.				
c; di	all cost_fun (o nIter = mIt, call update (call residual	1,-1 ←R, ≓Ū)				
	nd do all metrics ($\leftarrow \overline{\mathtt{X}}$, $\rightarrow \overline{\mathtt{Nrm}}$)				
	n is recomputed ter exiting the	•	eration, bu	it only used		
	joint solution $\overline{U}=0$.	is accumulat	ed, has to	be initiali	sed	

					31 / 35	
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic	
	Provide	ed fixed-po	int iterato	rs		
Adjoint 0 =	iterator using's =0	imple AD'.				
ca	all $\overline{\text{cost}_{fun}}$ ($\leftarrow \overline{\mathtt{U}}$, $\leftarrow \overline{\mathtt{Nrm}}$,	1)			
dc	nIter = mIt,	1,-1				
	call update (_			
	call residual	$(\leftarrow U \leftarrow \overline{Nrm})$, \rightarrow R)			
	nd do	. .				
Ca	all metrics (\leftarrow X, \rightarrow Nrm)				
5	iterator deri	ived from the	primal tim	e-stepping		
(PTS)						
	all cost_fun (-	1)			
do	nIter = 1, mI					
call $\overline{\text{residual}_{-u}}$ ($\leftarrow \overline{R}, \rightarrow \overline{U}$)						
$\overline{ extsf{R}}$ = $\overline{ extsf{R}}$ - g call update ($ ightarrow \overline{ extsf{R}}$, $ ightarrow \overline{ extsf{U}}$)						
er	nd do	/11, ←0)				
	all residual_nr	$\overline{rm} (\rightarrow \overline{U} \leftarrow \overline{N}$	rm)			
са						
	all metrics (Adjoint solvers	Stable adjoints	32 / 35 Automatic	

CPU and memory performance of multi-target AD

Runtime and memory performance of general and specialised (multi-target) differentiation.

	rúntime	runtime (rel.)	memory	memory (rel.)	
primal	211.1s	1	360.93MB	1	
general	328.8s	1.56	431.68MB	1.20	
special	249.1s	1.18	432.62MB	1.20	
change	-32%		0.2%		

Peak memory use (measured with valgrind/massif)

Case	flow Gb	adj. Gb	ratio
flatPlate, 2D quad, visc	0.217	0.260	1.20
rae2822, 2D quad, inv	0.199	0.231	1.16
DeathStar, 3D unstr, inv	0.331	0.368	1.12
TUB Stator, 3D hexa, visc	5.98	6.81	1.14

Notes

Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	Automatic	
	IV	1PI paralleli	Sation			Notes
 The aim is to support a simple adjoint build that does not require the user to mange MPI comm inside the FPI loop. Partitioning with Metis graph partitioner Two layers of halo cells ensure that a 5 point stencil is rank-local, no MPI messages inside the FPI loop. Include periodic edges in the graph to have periodic pairs rank-local which avoids MPI communication inside the FPI loop. 						
Physical meaning	Continuous adjoints	Discrete adjoints	Adjoint solvers	Stable adjoints	34 / 35 Automatic	
00000	000	00000	0000000	0000	0000000	
	А	Notes				
	this work have DA projects at (http://{abou	Queen Mary U	niversity of L	ondon	J,	

We have received funding from the European Union's Seventh Framework Programme and Horizon 2020 under Grant Agreement Nos. 317006, 642959.

35 / 35