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Organisation of the lectures

1. Univariate optimisation
• Bisection, Steepest Descent, Newton’s method

2. Multivariate optimisation
• Steepest descent, Newton’s method
• and line-search methods: Wolfe and Armijo conditions,
• Quasi-Newton methods,

3. Constrained Optimisation:
• Projected gradient methods,
• Penalty methods, exterior and interior point methods,
• SQP

4. Gradient computation
• Manual derivation, Finite Differences
• Algorithmic and automatic differentiation, fwd and bkwd.

5. Adjoint methods
• Reversing time, Automatic Differentiation
• Adjoint CFD codes
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Physical meaning of the adjoint equations
The flow equations ask the
question: “Where does a
perturbation travel to?”

If we have N sticks, we
need to ask N times

What if we could ask the question:
“Where does a perturbation come
from?”

If we have M observation spots, we
need to ask M times
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Adjoint equations: the galactic view

Forward approach:
send a perturbation out

Reverse, adjoint approach:
trace back an incoming
perturbation

Use the Force! Use the Force of the adjoint approach.
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Physical meaning of the adjoint

• The adjoint asks: where
does a perturbation
come from.

• This reverses all time-like
directions, or ’transposes’
the system matrix.

• The adjoint solution
quantifies the effect on
the objective function
brought by a unit source
term in the conservation
equations.

Adjoint solution for objective function

of pressure in a point in supersonic flow

in a channel from left to right.
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Example of an adjoint solution: aerofoil

NACA 0012, Ma=0.4, α = 2◦

Sensitivity w.r.t. lift

mass flux y-momentum
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The continuous adjoint
Minimise the objective J, subject to the constraint to satisfy the
conservation equations R(U, α) = 0:

I (U, α) = J(U, α)− λTR(U, α)

A linearised change in I is then

dI (U, α) =

(
∂J

∂U
− λT ∂R

∂U

)
dU +

(
∂J

∂α
− λT ∂R

∂α

)
dα

Choose λ to eliminate dU,(
∂J(U, α)

∂U
− λT ∂R(U, α)

∂U

)
= 0

Then

dI (U, α) =

(
∂J(U, α)

∂α
− λT ∂R(U, α)

∂α

)
dα

i.e., we no longer need to compute the state perturbation dU.
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Example adjoint operators

primal adjoint

∂u

∂x
− ε∂

2u

∂x2
−∂v
∂x
− ε∂

2v

∂x2

∇ · (k∇u) ∇ · (k∇v)

∂u

∂t
− ∂2u

∂x2
−∂v
∂t
− ∂2v

∂x2

∂u

∂t
+
∂u

∂x
−∂u
∂t

+
∂u

∂x

(Source: Giles, Pierce, 2001, “Introduction to the adjoint approach in design” )
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The discrete adjoint

Navier Stokes equations, fixed-point iteration to steady state:

R(U(α), α) = 0

Linearisation with respect to a design (control) variable α

∂R

∂U

∂U

∂α
= −∂R

∂α
,

Au = f .

Sensitivity of an objective function L with respect to α

dL

dα
=
∂L

∂α
+
∂L

∂U

∂U

∂α
=
∂L

∂α
+ gTu =

∂L

∂α
+ gTA−1f

∂L
∂α is directly computable, gTu requires an expensive solve for the
perturbation flow field u for each αi .
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The Adjoint Equations
Regroup the terms in the sensitivity computation:

dL

dα
=
∂L

∂α
+ gTA−1f =

∂L

∂α
+
(
A−Tg

)T
f =

∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−Tg = v , i.e. ATv = g(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)Tu = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation of fi
for each αi .
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Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each
design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the evaluation
of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g
incur a similar cost.

• Computing f is of the order of a single explicit sweep,
simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for
large design problems is essentially constant.
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Advantages of adjoint sensitivities (II)

• The forward method computes a perturbed flow field u and
then the change in functional as gTu.

• The adjoint solution directly computes the influence v of a
source term f onto the functional L.

• We then need to evaluate the source fi due to a design
perturbation αi .

• For a single design parameter, the cost of gTu and vTf are
the same.

• Using the adjoint the cost of gradient calculations for
large design problems is essentially constant.
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Commercial

Commercial adjoint solvers are available, among others, from

• Ansys Fluent: incompressible, now also compressible. A mix
of continuous and discrete.

• STAR CCM+: discrete

• Numeca: continuous

Aerospace:

• Rolls Royce: hydra (discrete)

• Airbus/DLR/Onera: tau (discr.), Flower (cont.), Elsa (cont.)

• MTU/DLR: trace (discr).
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The need for open-source adjoint solvers
Existing open-source adjoint CFD solvers:
• OpenFOAM: incompressible flow solver, continuous adjoint.

Needs substantial expertise to adjoint models, to overcome
stability issues.
• SU2: compressible flow solver, continuous adjoint. Needs

substantial expertise to adjoint models, to overcome stability
issues.
• SU2: compressible flow solver, discrete adjoint using

operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the years,

but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS
• provide a run-time and memory efficient open-source adjoint

solver.
• use source-transformation AD to enable the user to work with

the adjoint code at multiple levels.
• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.
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Assembling efficient discrete adjoints

• We use a combination of AD and hand-differentiation:
• Use AD for core routines like residual, gradients, limiters,

fluxes...
• Use hand-assembly for time-stepping, geometric multigrid and

distributed-memory parallel communication

• Derivatives are a linearisation at a particular flow state. If the
flow is at a steady state, only the final converged solution is
needed to compute derivatives

• If the flow is unsteady (or the solver doesn’t find a steady
state), back-propagation of derivatives requires intermediate
flow states. This typically requires large amount of memory,
but can be reduced with check-pointing.

• In the first instance, focus on steady-state.
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STAMPS: discretisation
Source-Transformation Adjoint Multi-Parametrisation, (Physics,
Parallelism) Solver

i

j

• Unstructured 3-D finite volume, vertex-centred solver.
• Physics: inviscid, laminar, RANS-turbulent ideal gas.
• Mesh-deformation coupled with a variety of geometric

parametrisations
• Interfaces for FSI, CHT.
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STAMPS: discretisation

Typical finite-volume compressible flow discretisation:

• compressible formulation with Roe and AUSM+ fluxes,
MUSCL reconstruction up to second order accuracy

• node-centred discretisation, edge-based fluxes, edge- and
cell-based gradients,

• Spalart-Allmaras turbulence model,

• explicit, block-Jacobi and implicit (JT-KIRK)1. timestepping
for steady-state and unsteady flows (BDF2)

• GMRES + ILU preconditioner.

• Parallelisation with MPI.

1
Xu, Müller: JT-KIRK, JCP 2015
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STAMPS: design capabilities
STAMPS is specifically designed as a discrete adjoint CFD solver:
• discrete adjoint solver: derivatives are consistent with the flow

solver: linear properties such as spectral radius of Jacobian are
guaranteed.
• fully differentiable with AD Tool Tapenade (Inria, France) in

tangent and adjoint mode: build of the adjoint code is
completely automated.
• Tapenade uses source-transformation: the memory use and

CPU-time per iteration are less than factor 2 to the flow,
overall run-time of the adjoint can be down to 50% of the
flow.
• coupled with a number of design parametrisation tools:

node-based, NURBS-CAD-based and parameter-CAD-based.
• coupling with Calculix structures solver for FSI and CHT is

currently undertaken.
• Adjoint-based mesh adaptation is currently being developed.
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Convergence of the flow solver to limit cycles
A major problem with adjoint solvers is robustness.

Turbomachinery case in off-design condition, convergence of the
CFD (left) to limit cycles, divergence of the adjoint solver (right).
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New iterative schemes for stable adjoints

In collaboration with Rolls Royce the group developed the more
stable JT-KIRK time-stepping scheme2 that is

• more efficient in runtime for the flow solver

• more stable in achieving full convergence for flow and adjiont.

• Typical cost functions such as efficiency, reaction, capacity
converge much more rapidly to steady-state.
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2S. Xu et al, “Stabilisation of discrete steady adjoint solvers”, JCP 2015
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Stable adjoints: essential for industrial optimisation

• Most importantly, convergence of the discrete adjoint can be
achieved even for mildly unsteady flow situations.

• This is an essential ingredient for industrial application of
gradient-based optimisation using adjoint methods.
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Framework for automatic application of S-T AD

Fully automated differentiation in tangent and reverse mode for

• fully coupled residual evaluation

• transport equations

• ILU precond. using AD’ed Jacobians

• Surface sensitivity projection

• adhering to coding templates ensures
AD’ability

• two-layer halo MPI parallelisation: no
MPI comm inside the FPI loop, no need
to differentiate through MPI calls.

• Extensive use of Multi-Activity mode in
Tapenade to derive efficient code for
specialised derivative instances.
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Provided fixed-point iterators

Simplified compressible fixed-point iterator

call initialise flow ( ←U )

call metrics ( →X, ←Nrm )

do nIter = 1,mIt

call residual ( →U, →Nrm, ←R )

call update ( →R, 
U )

end do

call cost fun ( →U, →Nrm, ←J )

Adjoint iterator using ‘simple AD’.
U=0

call cost fun ( ←U, ←Nrm, 1 )

do nIter = mIt,1,-1

call update ( ←R, 
U )

call residual ( ←U ←Nrm, →R)

end do

call metrics ( ←X, →Nrm )
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Provided fixed-point iterators

Adjoint iterator using ‘simple AD’.
U=0

call cost fun ( ←U, ←Nrm, 1 )

do nIter = mIt,1,-1

call update ( ←R, 
U )

call residual ( ←U ←Nrm, →R)

end do

call metrics ( ←X, →Nrm )

• Nrm is recomputed at every iteration, but only used

after exiting the FPI loop.

• Adjoint solution is accumulated, has to be initialised

to U=0.
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Provided fixed-point iterators
Adjoint iterator using ‘simple AD’.

U=0

call cost fun ( ←U, ←Nrm, 1 )

do nIter = mIt,1,-1

call update ( ←R, 
U )

call residual ( ←U ←Nrm, →R)

end do

call metrics ( ←X, →Nrm )

Adjoint iterator derived from the primal time-stepping

(PTS)

call cost fun ( ←g, ←Nrm, 1 )

do nIter = 1,mIt

call residual u ( ←R, →U )

R = R - g

call update ( →R, 
U )

end do

call residual nrm ( →U, ←Nrm )

call metrics ( ←X, →Nrm )
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CPU and memory performance of multi-target AD

Runtime and memory performance of general and specialised
(multi-target) differentiation.

runtime runtime (rel.) memory memory (rel.)

primal 211.1s 1 360.93MB 1

general 328.8s 1.56 431.68MB 1.20

special 249.1s 1.18 432.62MB 1.20

change -32% 0.2%

Peak memory use (measured with valgrind/massif)

Case flow Gb adj. Gb ratio

flatPlate, 2D quad, visc 0.217 0.260 1.20

rae2822, 2D quad, inv 0.199 0.231 1.16

DeathStar, 3D unstr, inv 0.331 0.368 1.12

TUB Stator, 3D hexa, visc 5.98 6.81 1.14
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MPI parallelisation

The aim is to support a simple adjoint
build that does not require the user to
mange MPI comm inside the FPI loop.

• Partitioning with Metis graph
partitioner

• Two layers of halo cells ensure that a
5 point stencil is rank-local, no MPI
messages inside the FPI loop.

• Include periodic edges in the graph to
have periodic pairs rank-local which
avoids MPI communication inside the
FPI loop.
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